ANÁLISE DOS MECANISMOS RESISTENTES E DAS SIMILARIDADES DE EFEITOS DA ADIÇÃO DE FIBRAS DE AÇO NA RESISTÊNCIA E NA DUCTILIDADE À PUNÇÃO DE LAJES-COGUMELO E AO CISALHAMENTO DE VIGAS DE CONCRETO

KRIStiane Mattar Accetti Holanda

Tese apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, como parte dos requisitos para a obtenção do Título de Doutora em Engenharia de Estruturas.

ORIENTADOR: Prof. Titular João Bento de Hanai

São Carlos
2002
Aos meus pais,
Nida e Ângelo,
aos meus irmãos,
Leonardo e Fernando,
e ao meu marido,
Osvaldo.
AGRADECIMENTOS

A Deus, por estar sempre a meu lado, guiando os meus passos e me auxiliando nos momentos mais difíceis.

Ao Prof. João Bento de Hanai, pela orientação segura, pela dedicação e também pela amizade que juntos construímos.

Ao incentivo de toda a minha família: meus pais, meus irmãos, meu marido, meus sogros D. Lourdinha e Sr. Osvaldo, minha avó Branca e todos aqueles que torceram pelo meu êxito no doutorado.

Ao meu marido Osvaldo, que tantas vezes me ajudou na elaboração deste trabalho, dando sugestões e tentando entender comigo particularidades do meu tema.

À amiga Vanessa Cristina de Castilho, pelo carinho e companheirismo demonstrados ao longo de todos esses anos aqui em São Carlos.

Ao Prof. Dr. Libânio Miranda Pinheiro, por ter me dado a oportunidade de fazer o doutorado no Departamento de Engenharia de Estruturas da EESC/USP.

Ao Prof. Dr. Ronaldo Barros Gomes e à aluna Eng.ª Alessandra Luciano Carvalho, ambos da Universidade Federal de Goiás, pelo auxílio na compreensão do modelo mecânico desenvolvido por este professor.

A todos os amigos do Departamento de Engenharia de Estruturas, pelo agradável convívio; em especial: Tatiana D., Mônica, Juliana, Alex, Silvana, Rejane, Renato, Anamaria, Andréa, Luciana e Joel.

Aos funcionários Maria Nadir Minatel, Rosi Aparecida Jordão Rodrigues, Marta Regina C. Faria e Masaki Kawabata, pelas orientações e pelos auxílios fornecidos durante a produção deste trabalho. A Francisco Carlos G. de Brito, pela elaboração cuidadosa dos desenhos.
Aos funcionários do Laboratório de Estruturas: Luiz Vicente Vareda, Amauri Ignácio da Silva, Jorge Brabo, Valdir Carlos De Lucca, Mário Botelho, Mauri Guillem, João Domingos P. Filho, Juliano L. Santos e Fabiano Domelas, pelo auxílio durante a realização dos ensaios experimentais.

Ao CNPq, pela bolsa de doutorado, e à FAPESP, pelo auxílio à pesquisa.
Sumário

LISTA DE FIGURAS...i
LISTA DE TABELAS ..ix
LISTA DE SÍMBOLOS ...xii
RESUMO...xiv
ABSTRACT ..xv

1 INTRODUÇÃO ..1
 1.1 GENERALIDADES .. 1
 1.2 OBJETIVOS ... 4
 1.3 CONTEÚDO DA TESE ... 5

2 CONCEITOS FUNDAMENTAIS ...7
 2.1 ASPECTOS TEÓRICOS DO CONCRETO COM FIBRAS ... 7
 2.1.1 MECANISMOS DE TRANSFERÊNCIA DE TENSÃO7
 2.1.2 MECANISMO DE ATUAÇÃO DAS FIBRAS ...11
 2.2 MECANISMOS ALTERNATIVOS RESISTENTES AO CISALHAMENTO EM VIGAS 18
 2.3 PESQUISAS SOBRE CISALHAMENTO EM VIGAS DE CONCRETO COM FIBRAS 23
 2.4 RESISTÊNCIA DE LAJES À PUNÇÃO ... 26
 2.5 PESQUISAS SOBRE PUNÇÃO EM LIGAÇÕES LAJE-PILAR DE CONCRETO COM FIBRAS ... 30

3 MODELOS MECÂNICOS PARA PUNÇÃO EM LAJES...................................41
 3.1 MODELO DE KINNUNEN & NYLANDER (1960)... 41
 3.1.1 HIPÓTESES...42
 3.1.2 APRESENTAÇÃO DO MODELO ...42
 3.1.3 DETERMINAÇÃO DAS FORÇAS ..44
 3.1.4 CONDIÇÕES DE EQUILÍBRIO ...46
 3.1.5 CRITÉRIOS DE RUPTURA ..46
 3.1.6 MÉTODO DE CÁLCULO ...47
 3.1.7 AMPLIAÇÃO DO MODELO..47
 3.2 MODELO DE SHEHATA (1985).. 48
 3.2.1 HIPÓTESES ...48
 3.2.2 DETERMINAÇÃO DAS FORÇAS ..50
 3.2.3 CONDIÇÕES DE EQUILÍBRIO ...55
 3.2.4 CRITÉRIO DE RUPTURA ...55
3.2.5 Método de Cálculo ... 56
3.2.6 Simplificação do modelo (SHEHATA, 1990) 56
3.3 Modelo de GOMES (1991) .. 58
 3.3.1 Hipóteses ... 58
 3.3.2 Apresentação do modelo ... 59
 3.3.3 Determinação das forças ... 60
 3.3.4 Equações de equilíbrio .. 69
 3.3.5 Critérios de ruptura ... 70
 3.3.6 Método de cálculo ... 74
3.4 Modelo de ALEXANDER & SIMMONDS (1991) 75

4 PROGRAMA EXPERIMENTAL ... 88
 4.1 Ensaios-piloto Série 1 ... 88
 4.2 Ensaios-piloto Série 2 ... 97
 4.3 Planejamento dos ensaios ... 105
 4.3.1 Descrição dos modelos de ligação laje-pilar e
 procedimentos de ensaio ... 105
 4.3.2 Variáveis dos ensaios ... 109
 4.3.3 Descrição dos modelos de vigas .. 111
 4.4 Dosagem ... 114
 4.4.1 Materiais .. 115
 4.4.2 Concreto de baixa resistência .. 120
 4.4.3 Concreto de alta resistência .. 124

5 RESULTADOS EXPERIMENTAIS ... 128
 5.1 Modelos da Série 1 ... 128
 5.1.1 Características dos materiais da S1 128
 5.1.2 Ensaio das lajes da Série 1 ... 133
 5.1.3 Ensaio das vigas da Série 1 ... 139
 5.1.4 Correlações entre lajes e vigas .. 149
 5.2 Modelos da Série 2 ... 151
 5.2.1 Características dos materiais da S2 152
 5.2.2 Ensaio das lajes da Série 2 ... 154
 5.2.3 Ensaio das vigas da Série 2 ... 159
 5.3 Modelos da Série 3 ... 169
 5.3.1 Ensaio das vigas da Série 3 ... 169
 5.3.2 Correlações entre lajes e vigas das Séries 2 e 3 180
5.4 MODELOS DA SÉRIE 4... 182
 5.4.1 CARACTERÍSTICAS DOS MATERIAIS DA SÉRIE 4... 182
 5.4.2 ENSAIO DAS LAJES DA SÉRIE 4... 184
 5.4.3 ANÁLISE COMPARATIVA: LAJES SÉRIE 4 X LAJES AZEVEDO (1999)........ 186
 5.4.4 ENSAIO DAS VIGAS DA SÉRIE 4... 189
 5.4.5 CORRELAÇÕES ENTRE LAJES E VIGAS DA SÉRIE 4............................ 195
 5.4.6 ANÁLISE COMPARATIVA: VIGAS SÉRIE 4 X VIGAS ENSAIOS-PILOTO
 SÉRIE 1.. 196
5.5 MODELOS DA SÉRIE 5... 200
 5.5.1 CARACTERÍSTICAS DOS MATERIAIS DA SÉRIE 5201
 5.5.2 ENSAIO DAS VIGAS DA SÉRIE 5... 204
 5.5.3 CORRELAÇÕES ENTRE LAJES DE ZAMBRANA VARGAS (1997) E
 VIGAS DA SÉRIE 5 ... 211
5.6 CORRELAÇÕES DE DUCTILIDADE ENTRE LAJES E VIGAS ANÁLOGAS 213
5.7 ANÁLISE CONJUNTA DAS LAJES .. 216
5.8 SÍNTESE DAS SIMILARIDADES ... 219

6 ANÁLISES TEÓRICAS..223
 6.1 ANÁLISE GLOBAL DAS LAJES .. 226
 6.2 ANÁLISE GLOBAL DAS VIGAS .. 231
 6.3 MODELO VIGA-ARCO MODIFICADO... 236
 6.3.1 RESISTÊNCIA.. 236
 6.3.2 DUCTILIDADE.. 245

7 CONCLUSÕES ... 249

ANEXO.. 254
 A. TABELAS DE RESISTÊNCIAS DOS CP... 255
 B. GRÁFICOS DE ENSAIO DOS PRISMAS... 265
 C. ÍNDICES DE TENACIDADE À FLEXÃO.. 267
 D. DEFORMAÇÃO DA ARMADURA DAS LAJES... 268
 E. DEFORMAÇÃO DA ARMADURA DAS VIGAS... 270

REFERÊNCIAS BIBLIOGRÁFICAS.. 272

BIBLIOGRAFIA COMPLEMENTAR... 281
Lista de Figuras

Figura 2.1 – Representação do arrancamento da fibra da matriz (BENTUR & MINDESS, 1990) ... 8
Figura 2.2 – Representação das tensões de cisalhamento na interface (BENTUR & MINDESS, 1990) ... 9
Figura 2.3 – Representação da fibra e da matriz na vizinhança da fissura 10
Figura 2.4 – Representação de uma fissura (BENTUR & MINDESS, 1990) 12
Figura 2.5 – Curva tensão x deformação do compósito (BENTUR & MINDESS, 1990) ... 13
Figura 2.6 – Modelo que considera o arrancamento em termos da Mecânica da Fratura (BENTUR & MINDESS, 1990) ... 14
Figura 2.7 – Curvas tensão x deformação dos compósitos com (a) $V_t > V_{f(crit)}$ e (b) $V_t < V_{f(crit)}$ (BENTUR & MINDESS, 1990) ... 15
Figura 2.8 – Curvas tensão de tração x deformação de matrizes frágeis reforçadas com fibras: (a) Volume pequeno de fibras; (b) Volume intermediário de fibras; (c) Volume alto de fibras. (BALAGURU & SHAH, 1992)... 17
Figura 2.9 – Transferência da força cortante em vigas sem estribos (FURLAN JR., 1995) ... 19
Figura 2.10 – Mecanismos resistentes do concreto: (a) viga (b) arco (RUSSO & PULERI, 1997) ... 20
Figura 2.11 – Parcelas do esforço cortante resistido por uma viga de CRFA (LIM & OH, 1999) .. 22
Figura 2.12 – Contribuição das fibras no cisalhamento (SWAMY et al., 1993) 23
Figura 2.13 – Comportamento geral de lajes ensaiadas à punção 29
Figura 2.14 – Valores da força última em função do volume de fibras (ZAMBRANA VARGAS, 1997) ... 35
Figura 2.15 – Tipos de ruína (a) punção pura (b) punção-flexão (c) flexão (AZEVEDO, 1999) ... 36
Figura 2.16 – Compilação dos resultados experimentais dos autores citados 40
Figura 3.1 – Modelo mecânico de KINNUNEN & NYLANDER (1960) 43
Figura 3.2 – Modelo mecânico de SHEHATA (1985) .. 49
Figura 3.3 – Diagrama tensão-deformação do concreto (SHEHATA, 1985) 50
Figura 3.4 – Tronco de cone (SHEHATA, 1985) .. 51
Figura 3.5 – Diagramas de deformação do aço e do concreto
(SHEHATA, 1985) ...52
Figura 3.6 – Modelo mecânico de GOMES (1991) ..60
Figura 3.7 – Tronco de pirâmide ou prismatóide (GOMES, 1991)61
Figura 3.8 – Diagramas de deformação do aço e do concreto (GOMES, 1991) ...63
Figura 3.9 – Diagrama tensão-deformação do aço (GOMES, 1991)66
Figura 3.10 – Diagrama das forças das armaduras de cisalhamento
(GOMES, 1991) ...68
Figura 3.11 – Modelo mecânico adaptado para CRFA ..70
Figura 3.12 – Mecanismo de ruptura por deslizamento (GOMES, 1991)71
Figura 3.13 – Critério de Coulomb modificado com vetores deslocamento
(GOMES, 1991) ...71
Figura 3.14 – “Truss Model” (ALEXANDER & SIMMONDS, 1987)75
Figura 3.15 – Transferência de esforço cortante em uma ligação laje-pilar
interno (AFHAMI et al., 1998) ..76
Figura 3.16 – Distribuição das faixas radiais (ALEXANDER & SIMMONDS, 1992) ...77
Figura 3.17 – Arco radial comprimido (ALEXANDER & SIMMONDS, 1992)78
Figura 3.18 – Equilíbrio de uma faixa radial (ALEXANDER & SIMMONDS, 1991) ...79
Figura 3.19 – Diagrama de tensões ...80
Figura 3.20 – Diagrama de corpo-livre da metade de uma faixa radial
(ALEXANDER & SIMMONDS, 1991) ..82
Figura 3.21 – Seção crítica para o Modelo Viga-Arco (ALEXANDER & SIMMONDS, 1991) ...84
Figura 3.22 – Modos de ruptura à punção: (a) dúctil; (b) frágil (ALEXANDER & SIMMONDS, 1992) ..85
Figura 4.1 – Esquema de ensaio e armaduras das Vigas Piloto Série 191
Figura 4.2 – Esquema de ensaio das lajes de AZEVEDO (1999)91
Figura 4.3 – Instrumentação das Vigas Piloto Série 192
Figura 4.4 – Gráfico Força x Deformação da armadura das Vigas Piloto
Série 1 ..93
Figura 4.5 – Gráfico Força x Deslocamento das Vigas Piloto Série 193
Figura 4.6 – Configuração de ruína das Vigas Piloto Série 194
Figura 5.5 – Sistema de ensaio das ligações laje-pilar (b)................................. 134
Figura 5.6 – Gráfico *Força x Deslocamento* das ligações laje-pilar da Série 1..... 136
Figura 5.7 – Gráfico *Força Normalizada x Deslocamento* das ligações laje-
Pilar da Série 1 .. 136
Figura 5.8 – Gráfico *Força/Força de pico x Deslocamento* das lajes da
Série 1 .. 137
Figura 5.9 – Gráfico *Força x Deformação* das armaduras negativas de flexão
das lajes da Série 1 .. 138
Figura 5.10 – Gráfico *Força x Deformação* das armaduras positivas de flexão
das lajes da Série 1 .. 139
Figura 5.11 – Sistema de ensaio das vigas V1, V2 e V3A 140
Figura 5.12 – Configuração de ruína das vigas da Série 1 141
Figura 5.13 – Dispositivo “yoke” .. 143
Figura 5.14 – Gráfico *Força x Deformação* das vigas V1 144
Figura 5.15 – Gráfico *Força x Deformação* das vigas V2 145
Figura 5.16 – Gráfico *Força x Deformação* das vigas V3 146
Figura 5.17 – Gráfico *Força x Deslocamento* das vigas da Série 1 147
Figura 5.18 – Gráfico *Força Normalizada x Deslocamento* das vigas da
Série 1 .. 147
Figura 5.19 – Gráfico *Força/Força de pico x Deslocamento* das vigas da
Série 1 .. 148
Figura 5.20 – Gráfico *Resistência normalizada x Volume de fibras* para lajes
e vigas da S1 ... 150
Figura 5.21 – Gráfico *Resistência normalizada das lajes x Resistência média
normalizada das vigas* da Série 1 ... 151
Figura 5.22 – Gráficos *Força/Força de pico x Deslocamento/Deslocamento de
pico* da S1 ... 151
Figura 5.23 – Gráfico *Força x Deslocamento* das ligações laje-pilar da
Série 2 ... 155
Figura 5.24 – Gráfico *Força Normalizada x Deslocamento* das ligações laje-
Pilar da Série 2 .. 156
Figura 5.25 – Gráfico *Força/Força de pico x Deslocamento* das lajes da
Série 2 ... 157
Figura 5.26 – Gráfico *Força x Deformação* das armaduras negativas de flexão
das lajes da Série 2 .. 157
Figura 5.27 – Gráfico Força x Deformação das armaduras positivas de flexão das lajes da Série 2 ...158
Figura 5.28 – Gráfico Força x Ângulo da deformação principal das vigas V4 ..160
Figura 5.29 – Gráfico Força x Ângulo da deformação principal das vigas V5 ..160
Figura 5.30 – Gráfico Força x Ângulo da deformação principal das vigas V6 ..161
Figura 5.31 – Configuração de ruína das vigas da Série 2 ...162
Figura 5.32 – Gráfico Força x Deformação das vigas V4 ..163
Figura 5.33 – Gráfico Força x Deformação das vigas V5 ..164
Figura 5.34 – Gráfico Força x Deformação das vigas V6 ..165
Figura 5.35 – Gráfico Força x Deslocamento das vigas da Série 2 ..165
Figura 5.36 – Gráfico Força Normalizada x Deslocamento das vigas da Série 2 ...166
Figura 5.37 – Gráfico Força/Força de pico x Deslocamento das vigas da Série 2 ...167
Figura 5.38 – Sistema de ensaio das vigas da Série 3 ..170
Figura 5.39 – Gráfico Força x Ângulo da deformação principal das vigas V7 ..171
Figura 5.40 – Gráfico Força x Ângulo da deformação principal das vigas V8 ..171
Figura 5.41 – Gráfico Força x Ângulo da deformação principal das vigas V9 ..172
Figura 5.42 – Configuração de ruína das vigas da Série 3 ..173
Figura 5.43 – Gráfico Força x Deformação das vigas V7 ..174
Figura 5.44 – Gráfico Força x Deformação das vigas V8 ..175
Figura 5.45 – Gráfico Força x Deformação das vigas V9 ..176
Figura 5.46 – Gráfico Força x Deslocamento das vigas da Série 3 ..176
Figura 5.47 – Gráfico Força Normalizada x Deslocamento das vigas da Série 3 ..177
Figura 5.48 – Gráfico Força/Força de pico x Deslocamento das vigas da Série 3 ...178
Figura 5.49 – Gráfico Resistência normalizada x Volume de fibras para lajes e vigas de S2 e S3 ..180
Figura 5.50 – Gráfico Resistência normalizada das lajes x Resistência média normalizada das vigas da Série 3 ..181
Figura 5.51 – Gráficos Força/Força de pico x Deslocamento/Deslocamento de pico de S2 e S3 ..181
Figura 5.52 – Gráfico Força x Deformação das armaduras negativas de flexão das lajes da Série 4 ..185
Figura 5.53 – Gráfico Força x Deformação das armaduras positivas de flexão das lajes da Série 4..186
Figura 5.54 – Gráfico Força x Deslocamento das lajes analisadas...............188
Figura 5.55 – Gráfico Força Normalizada x Deslocamento das lajes analisadas..188
Figura 5.56 – Gráfico Força/Força de pico x Deslocamento das lajes analisadas...189
Figura 5.57 – Configuração de ruína das vigas da Série 4........................191
Figura 5.58 – Gráfico Força x Deformação das vigas V10........................192
Figura 5.59 – Gráfico Força x Deformação das vigas V11......................193
Figura 5.60 – Gráfico Resistência normalizada x Volume de fibras para lajes e vigas da S4 ...195
Figura 5.61 – Gráfico Resistência normalizada das lajes x Resistência média normalizada das vigas da Série 4 ..196
Figura 5.62 – Gráficos Força/Força de pico x Deslocamento/Deslocamento de pico da S4 ..196
Figura 5.63 – Gráfico Força x Deslocamento das vigas analisadas198
Figura 5.64 – Gráfico Força Normalizada x Deslocamento das vigas analisadas...199
Figura 5.65 – Gráfico Força/Força de pico x Deslocamento das vigas analisadas ...200
Figura 5.66 – Configuração de ruína das vigas da Série 5.........................206
Figura 5.67 – Gráfico Força x Deformação da armadura das vigas V12 da Série 5...207
Figura 5.68 – Gráfico Força x Deformação da armadura das vigas V13 da Série 5...207
Figura 5.69 – Gráfico Força x Deformação da armadura das vigas V14 da Série 5 ...208
Figura 5.70 – Gráfico Força x Deslocamento das vigas da Série 5208
Figura 5.71 – Gráfico Força Normalizada x Deslocamento das vigas da Série 5...209
Figura 5.72 – Gráfico Força/Força de pico x Deslocamento das vigas da Série 5 ...210
Figura 5.73 – Gráfico Resistência normalizada x Volume de fibras para lajes e vigas da S5 ...212
Figura 5.74 – Gráfico Resistência normalizada das lajes x Resistência média normalizada das vigas da Série 5 ... 213
Figura 5.75 – Relação entre índices de ductilidade de lajes e vigas análogas 216
Figura 5.76 – Gráfico Carga última experimental/Estimativa da carga de ruína à flexão x Volume de fibras das lajes ensaiadas 217
Figura 5.77 – Gráfico Resistência Normalizada x Volume de fibras das lajes ensaiadas .. 218
Figura 5.78 – Gráfico Resistência (última, de fissuração ou de escoamento da armadura) x Resistência do concreto à compressão das lajes ensaiadas .. 219
Figura 6.1 – Relação entre a resistência do concreto à tração por compressão diametral e o volume de fibras de aço das lajes 227
Figura 6.2 – Aferição da Equação do ACI 318 Modificada para lajes (dados das lajes L2 e L3 eliminados) .. 229
Figura 6.3 – Comparação dos resultados experimentais com os calculados pela Equação do ACI 318 Modificada para lajes (Equação 6.5) 230
Figura 6.4 – Relação entre a resistência do concreto à tração por compressão diametral e o volume de fibras de aço das vigas 233
Figura 6.5 – Aferição da Equação do ACI 318 Modificada para vigas (todos os dados incluídos) ... 234
Figura 6.6 – Comparação dos resultados experimentais com os calculados pela Equação do ACI 318 Modificada para vigas (Equação 6.9) .. 235
Figura 6.7 – Aferição da Equação do ACI 318 Modificada para vigas (dados das vigas V6A e V6B eliminados) ... 238
Figura 6.8 – Aferição da equação do Modelo Viga-Arco Modificado (todos os dados incluídos) ... 240
Figura 6.9 – Aferição da equação do Modelo Viga-Arco Modificado (dados das lajes L2 e L3 eliminados) ... 241
Figura 6.10 – Aferição do Modelo Viga-Arco Modificado (toda a bibliografia consultada) ... 243
Figura 6.11 – Aplicação da equação do Modelo Viga-Arco Modificado para todos os resultados experimentais disponíveis 244
Figura 6.12 – Contribuição das fibras no cisalhamento (SWAMY et al., 1993) 246
Figura 6.13 – Índices de ductilidade calculados a partir do

Modelo Viga-Arco Modificado .. 248
Lista de Tabelas

Tabela 2.1 – Características dos trabalhos compilados ... 38
Tabela 2.2 (continuação) – Características dos trabalhos compilados 39
Tabela 3.1 – Aplicação do Modelo Viga-Arco para lajes sem fibras 86
Tabela 4.1 – Dados das lajes de AZEVEDO (1999) ... 89
Tabela 4.2 – Traço do concreto das Vigas Piloto Série 1 ... 89
Tabela 4.3 – Características da armadura de flexão das Vigas Piloto Série 1 89
Tabela 4.4 – Resultados dos ensaios de caracterização dos concretos

utilizados nas Vigas Piloto Série 1 ... 90
Tabela 4.5 – Previsão da carga de ruína das Vigas Piloto Série 1 90
Tabela 4.6 – Dados e resultados das Vigas Piloto Série 1 ... 92
Tabela 4.7 – Atuação das fibras nos compósitos dos Ensaios-piloto Série 1 95
Tabela 4.8 – Aplicação do modelo teórico às Vigas Piloto Série 1 95
Tabela 4.9 – Comparação de resistências entre Lajes e Vigas Piloto Série 1 96
Tabela 4.10 – Traço do concreto das Vigas Piloto Série 2 ... 98
Tabela 4.11 – Características das armaduras de flexão das Vigas Piloto

Série 2 ... 98
Tabela 4.12 – Resultados dos ensaios de caracterização dos concretos

utilizados nas Vigas Piloto Série 2 ... 98
Tabela 4.13 – Dados e resultados das Vigas Piloto Série 2 ... 100
Tabela 4.15 – Programa de ensaios .. 110
Tabela 4.16 – Características das fibras utilizadas ... 111
Tabela 4.17 – Exigências para o concreto reforçado com fibras de aço e para

o concreto de alta resistência ... 115
Tabela 4.18 – Análise granulométrica do agregado muiço 117
Tabela 4.19 – Análise granulométrica do agregado graúdo 118
Tabela 4.20 – Misturas experimentais para os concretos sem fibra 121
Tabela 4.21 – Misturas experimentais para os compósitos (f_{ct4} \geq 20 MPa) 123
Tabela 4.22 – Misturas experimentais para os compósitos (f_{ct4} \geq 60 MPa) 126
Tabela 5.1 – Características médias das armaduras de flexão dos modelos da

Série 1 ... 128
Tabela 5.2 – Traço do concreto dos modelos da Série 1 .. 129
Tabela 5.3 – Resultados dos ensaios de caracterização dos concretos utilizados na Série 1
Tabela 5.4 – Índices médios de tenacidade à flexão dos compósitos da Série 1
Tabela 5.5 – Estimativa da carga de ruína dos modelos da Série 1
Tabela 5.6 – Dados e resultados das lajes da Série 1
Tabela 5.7 – Dados e resultados das vigas da Série 1
Tabela 5.8 – Atuação das fibras nos compósitos das vigas da Série 1
Tabela 5.9 – Aplicação do modelo teórico às vigas da Série 1
Tabela 5.10 – Comparação de resistências entre lajes e vigas da Série 1
Tabela 5.11 – Traço do concreto dos modelos de S2 e S3
Tabela 5.12 – Resultados dos ensaios de caracterização dos concretos utilizados em S2 e S3
Tabela 5.13 – Índices médios de tenacidade à flexão dos compósitos das séries S2 e S3
Tabela 5.14 – Previsão da carga de ruína dos modelos da Série 2
Tabela 5.15 – Dados e resultados das lajes da Série 2
Tabela 5.16 – Dados e resultados das vigas da Série 2
Tabela 5.17 – Atuação das fibras nos compósitos das vigas da Série 2
Tabela 5.18 – Aplicação do modelo teórico às vigas da Série 2
Tabela 5.19 – Previsão da carga de ruína das vigas da Série 3
Tabela 5.20 – Dados e resultados das vigas da Série 3
Tabela 5.21 – Atuação das fibras nos compósitos das vigas da Série 3
Tabela 5.22 – Aplicação do modelo teórico às vigas da Série 3
Tabela 5.23 – Comparação de resistências entre lajes e vigas das séries S2 e S3
Tabela 5.24 – Traço do concreto dos modelos da Série 4
Tabela 5.25 – Resultados dos ensaios de caracterização dos concretos utilizados na S4
Tabela 5.26 – Índices médios de tenacidade à flexão dos compósitos da Série 4
Tabela 5.27 – Previsão da carga de ruína dos modelos da Série 4
Tabela 5.28 – Dados e resultados das lajes da Série 4
Tabela 5.29 – Dados e resultados das lajes analisadas
Tabela 5.30 – Dados e resultados das vigas da Série 4
Tabela 5.31 – Atuação das fibras nos compósitos das vigas da Série 4194
Tabela 5.32 – Aplicação do modelo teórico às vigas da Série 4194
Tabela 5.33 – Comparação de resistências entre lajes e vigas da Série 4195
Tabela 5.34 – Comparação de resistências entre lajes e vigas dos Ensaios
 Piloto S1 ..197
Tabela 5.35 – Dados e resultados das vigas analisadas197
Tabela 5.36 – Dados das lajes de ZAMBRANA VARGAS (1997)201
Tabela 5.37 – Traço do concreto dos modelos da Série 5203
Tabela 5.38 – Resultados dos ensaios de caracterização dos concretos
 utilizados na S5 ...203
Tabela 5.39 – Índices médios de tenacidade à flexão dos compósitos da
 Série 5 ..204
Tabela 5.40 – Previsão da carga de ruína das vigas da Série 5204
Tabela 5.41 – Dados e resultados das vigas da Série 5205
Tabela 5.42 – Atuação das fibras nos compósitos das vigas da Série 5210
Tabela 5.43 – Aplicação do modelo teórico às vigas da Série 5211
Tabela 5.44 – Comparação de resistências entre lajes e vigas da Série 5212
Tabela 5.45 – Índices de ductilidade de lajes e vigas análogas214
Tabela 5.46 – Síntese de similaridades ..221
Tabela 5.47 (continuação) – Síntese das similaridades222
Tabela 6.1 – Dados e resultados principais de todos os modelos224
Tabela 6.2 (continuação) – Dados e resultados principais de todos os
 modelos ..225
Tabela 6.3 – Determinação de f_{sp}^* segundo a Equação 6.2227
Tabela 6.4 – Determinação de f_{sp}^* segundo a Equação 6.5232
Tabela 6.5 – Aplicação do Modelo Viga-Arco Modificado (parte I)239
Tabela 6.6 – Aplicação do Modelo Viga-Arco Modificado (parte II)239
Tabela 6.7 – Índice de ductilidade de lajes e vigas análogas247
Lista de Símbolos

b largura da viga

c dimensão em planta da chapa quadrada de aplicação do carregamento

d altura útil do elemento

ℓ comprimento da fibra de aço

D diâmetro da fibra de aço

E módulo de elasticidade do aço

Ec módulo secante de deformação longitudinal do concreto

f_c resistência do concreto à compressão axial

f_r resistência do compósito à primeira fissura

f_{ct,sp} resistência do concreto à tração por compressão diametral

f_{ct,f} resistência do concreto à tração na flexão

f_u tensão de ruptura do aço

f_y tensão de escoamento do aço

F força aplicada na viga

F_{cis} estimativa da carga de ruína da viga ao cisalhamento

F_{filb} força de arrancamento das fibras ao longo da fissura inclinada

F_{fil} estimativa da carga de ruína da viga à flexão

F_r carga correspondente à 1ª fissura de flexão (retirada do gráfico F x u)

F_{r(teo)} carga correspondente à 1ª fissura (calculada segundo o ACI 318 (1999))

F_{u(med)} carga última (resistência) experimental média das vigas A e B

F_{u} carga última (resistência) da viga obtida experimentalmente

h espessura do elemento

i_L índice de ductilidade da laje

i_V índice de ductilidade da viga

M_{u} momento fletor último da laje

P força aplicada na laje

P_{fil} estimativa da carga de ruína da laje à flexão

P_{pun} estimativa da carga de ruína da laje à punção

P_r carga correspondente à 1ª fissura de flexão (retirada do gráfico P x u)

P_{u} carga última (resistência) da laje obtida experimentalmente

P_{y} carga da laje correspondente ao início do escoamento da armadura

V_f volume percentual de fibras

V_{f(cri)} volume percentual crítico de fibras
\(V_{fb} \) parcela do esforço cortante devida à contribuição das fibras

\(\Delta_u \) deslocamento do ponto central da laje correspondente à carga última

\(\Delta_y \) deslocamento do ponto central da laje correspondente ao início de escoamento da armadura

\(\varepsilon_y \) deformação de escoamento do aço

\(\theta \) ângulo médio da superfície de ruína em relação ao plano médio do elemento, medido experimentalmente

\(\rho \) taxa de armadura longitudinal de flexão do elemento

\(\sigma_{ct,u} \) resistência última do compósito à tração direta

\(\sigma_{cu} \) resistência do compósito à tração pós-fissuração

\(\sigma_{ct,u} \) resistência última do compósito à tração direta

\(\sigma_{fu} \) resistência última da fibra à tração

\(\sigma_m \) resistência da matriz à tração direta

\(\sigma_{mu} \) resistência última da matriz à tração direta

\(\tau_{fib} \) parcela da tensão de cisalhamento devida à contribuição das fibras

\(\tau_{fu} \) resistência média de aderência na interface fibra-matriz

\(\omega \) força cortante uniformemente distribuída transmitida dos quadrantes às faixas radiais

\(\psi_u \) rotação última da laje
Resumo

Um dos principais problemas das lajes-cogumelo refere-se à ruína por puncionamento da ligação laje-pilar. Esta forma de ruína deve ser evitada, proporcionando-se às lajes as melhores condições para o desenvolvimento de mecanismos de escoamento das armaduras e de ruína por flexão, antes da ocorrência da ruína por cisalhamento. A introdução de fibras de aço em elementos de concreto submetidos a solicitações tangenciais proporciona melhoria de desempenho, seja pelo aumento da capacidade resistente, seja pela alteração da forma de ruína. Pretende-se contribuir com o avanço do conhecimento sobre o assunto, explorando aspectos como a análise das similaridades dos efeitos da adição de fibras de aço na resistência e na ductilidade de lajes-cogumelo à punção, com aqueles que se observam no cisalhamento de vigas prismáticas análogas. Abordam-se os casos de ligações laje-pilar interna sem armadura de punção, variando-se a resistência do concreto, a taxa e o tipo de fibra utilizado. A partir dos resultados experimentais, verificou-se que existe uma similaridade de comportamento estrutural entre esses dois elementos e concluiu-se que é possível utilizar ensaios de cisalhamento em vigas prismáticas para se obter indicadores a serem utilizados nos ensaios de punção de lajes. Foi efetuada uma análise da adaptabilidade de modelos teóricos existentes sobre cisalhamento em vigas e punção em lajes, com vistas à consideração do efeito da adição de fibras de aço ao concreto. Com base nesses modelos, foram estabelecidos critérios quantitativos para avaliação da resistência e da ductilidade das ligações laje-pilar.

Palavras-chave: concreto com fibras; punção; cisalhamento; similaridades; modelo teórico.
Abstract

One of the main problems of flat slabs concerns the punching shear failure of the slab-column connection. This form of failure must be avoided, providing flat slabs with the best conditions for the development of yielding mechanisms of the flexural reinforcement before the occurrence of shear failure. The addition of steel fibers to concrete elements subjected to tangential stress provides performance improvement, by either the resistant capacity increase or the failure mode alteration. It is intended to contribute to the advance of the subject knowledge, by exploring aspects as the analysis of similarities of the steel fiber addition effects on both strength and ductility of flat slabs to punching shear with those observed in the shear of analogous prismatic beams. The cases approached include internal slab-column connections without shear reinforcement, and the variables investigated included concrete strength, fiber volume and type of steel fiber. From the experimental results, it was possible to verify that there exists a similarity of structural behavior between these two elements and the shear tests in prismatic beams can be used to get indicators to be utilized in punching shear tests of flat slabs. An adaptability analysis of the existing theoretical models on shear in beams and punching shear in flat slabs was carried out in order to consider the steel fibers addition effect on the concrete. Based on these models, quantitative criteria for the evaluation of both strength and ductility of the slab-column connections were established.

Keywords: steel fibers reinforced concrete; punching shear; shear; similarities; theoretical model.
1 Introdução

1.1 Generalidades

O sistema estrutural de lajes-cogumelo, no qual as lajes estão diretamente apoiadas nos pilares, pode oferecer diversas vantagens técnicas com relação ao sistema convencional de lajes, vigas e pilares, sendo mais econômico e tecnicamente adequado em muitos casos. Algumas dessas vantagens são: simplificação de formas, de armaduras, de concretagem e das instalações; redução da altura total do edifício e ampla liberdade na definição dos espaços internos.

Os principais problemas das lajes-cogumelo referem-se à possibilidade de ocorrência de flechas inaceitáveis em condições de serviço, de diminuição da estabilidade global do edifício com relação às ações horizontais e de ruína por puncionamento da ligação laje-pilar.

A redistribuição de momentos fletores, em combinação com os efeitos de membrana, garante uma considerável reserva de capacidade resistente à flexão nas lajes-cogumelo em geral. Por esse motivo, a capacidade resistente dessas lajes é, geralmente, ditada muito mais pelo puncionamento do que pela flexão.

Punção é o estado limite último determinado por cisalhamento no entorno de forças concentradas (ABNT NBR6118/2000). Ela é diferente do estado limite último determinado por cisalhamento em seções planas solicitadas por forças cortantes, existindo, entretanto, semelhanças entre eles.

Na ruína por punção, sendo a força cortante a ação predominante, a laje pode romper antes que a armadura de flexão atinja sua tensão de escoamento, observando-se então uma ruína de natureza frágil, abrupta, que não oferece qualquer aviso prévio. Esta forma de ruína deve, portanto, ser evitada, proporcionando-se às lajes as melhores condições para o desenvolvimento de mecanismos de escoamento das armaduras e de ruína por flexão, mais dúctil,
antes da ocorrência da ruína por cisalhamento. Assim, é essencial que nos projetos de ligações laje-pilar se preocupe com os parâmetros tanto de resistência como de ductilidade.

Na punção, além da alta concentração de esforços cortantes e de momentos fletores na região reduzida da ligação, existem outros fatores que exercem influência na ruína das lajes, tais como: resistência característica do concreto, taxas de armadura de flexão, espessura da laje, existência ou não de armadura de combate à punção, dimensões e formas das seções transversais dos pilares, relação momento fletor/força cortante na ligação laje-pilar.

Existem algumas maneiras de se aumentar a resistência à punção em ligações com lajes-cogumelo, tais como aumentar a resistência do concreto ou utilizar armadura de combate à punção. O aumento da resistência do concreto pode não ser suficiente para elevar o nível da resistência da ligação aos valores necessários, além do que ele por si só não lhe oferece a ductilidade desejada.

As armaduras usualmente empregadas no combate à punção proporcionam bons resultados quanto à resistência e à ductilidade da ligação. Todavia, na prática, elas podem trazer alguma dificuldade durante a execução, especialmente em lajes de espessura reduzida. Elas podem eventualmente aumentar o congestionamento de armaduras na região próxima ao pilar, as quais normalmente são arranjadas na forma de barras pouco espaçadas. Além disso, há necessidade de maior tempo para montagem e para dobramento do aço, aumentando o tempo total de execução.

Pesquisas mais recentes têm mostrado a melhoria de desempenho devida à introdução de fibras de aço em elementos de concreto submetidos a solicitações tangenciais, seja pelo aumento da capacidade resistente, seja pela alteração da forma de ruína. O interesse despertado por esse estudo pode ser explicado pela
expectativa de bons resultados no desenvolvimento de novos materiais, na economia de tempo para no preparo do concreto com fibras, em face ao tempo necessário para montagem e execução da armadura transversal, ou mesmo pela vantagem das fibras proporcionarem maior ductilidade à ligação.

A ruína por solicitação tangencial pode ocorrer quando as tensões principais de tração excedem a resistência do concreto à tração, e então uma fissura diagonal se propaga ao longo da espessura do elemento estrutural, criando condições para a manifestação de mecanismos de ruptura (KHUNTIA et al., 1999; LIM & OH, 1999). As fibras de aço podem favorecer a redução da concentração de tensões nas extremidades das fissuras de flexão e de cisalhamento, controlando sua propagação em todas as direções, uma vez que são distribuídas no concreto de forma aleatória. A inclusão de fibras de aço no concreto pode, em taxas mais elevadas, aumentar a sua resistência à primeira fissura e diminuir a abertura das fissuras em geral.

Deve-se salientar o particular interesse na associação de concreto de alta resistência com fibras de aço. O incremento da resistência do concreto aumenta a resistência da ligação à punção, mas ao mesmo tempo o concreto de alta resistência mostra-se mais frágil e leva à diminuição do efeito de engrenamento dos agregados na superfície de ruína, pois ela passa a se mostrar mais lisa. A adição de fibras de aço oferece, taticamente, maior tenacidade ao concreto e efeitos de costura, tanto na superfície de ruína como nas imediações das armaduras longitudinais e transversais (quando estas existirem).

No âmbito nacional, estudos experimentais tratando da adição de fibras de aço na resistência de lajes-cogumelo à punção ainda são relativamente limitados. Tem-se conhecimento apenas de duas pesquisas, realizadas na EESC-USP, que são as de ZAMBRANA VARGAS (1997) e de AZEVEDO (1999). Em suma, as
principais conclusões a que eles chegaram foram de que as fibras de aço produzem aumento de resistência e de ductilidade das ligações laje-pilar, podem alterar o modo de ruína e são mais eficientes em matrizes de alta resistência.

Dando seqüência à linha de pesquisa iniciada no Departamento de Engenharia de Estruturas da EESC-USP, sobre a resistência e a ductilidade de ligações laje-pilar de concreto reforçado com fibras de aço, propôs-se este trabalho. Pretende-se contribuir com o avanço do conhecimento sobre o assunto, explorando outros aspectos como a análise das similaridades dos efeitos da adição de fibras de aço na resistência e na ductilidade de lajes-cogumelo à punção, com aquelas que se observam no cisalhamento de vigas prismáticas análogas.

1.2 Objetivos

O objetivo principal deste trabalho é avaliar a contribuição da adição de fibras de aço nos mecanismos resistentes à punção em ligações laje-pilar de lajes-cogumelo. Este mecanismo adicional, seja ele principal ou alternativo, juntamente com o efeito de pino, o engrenamento dos agregados e a colaboração do banzo comprimido, representa a contribuição do concreto na transferência de forças cortantes.

Os objetivos específicos são:

a) produzir novos dados experimentais e re-estruturar os dados existentes sobre a resistência e a ductilidade de ligações laje-pilar em lajes-cogumelo de concreto armado reforçado com fibras de aço;

b) efetuar uma análise prospectiva da adaptabilidade de modelos mecânicos teóricos existentes sobre a punção em lajes, com vistas à consideração do efeito da adição de fibras de aço ao concreto;

c) analisar e estabelecer conclusões sobre a similaridade de comportamento estrutural de lajes de concreto com fibras, sujeitas à punção, e de vigas análogas submetidas à força cortante;

d) estabelecer, quando possível, correlações qualitativas entre a resistência e a ductilidade de lajes-cogumelo à punção, com a resistência e a ductilidade de vigas prismáticas ao cisalhamento;

e) estabelecer, na medida do possível, método e critérios de seleção do tipo, volume e outras características das fibras de aço a serem usadas
em ligações laje-pilar, por meio de indicadores obtidos em ensaios mais simples de cisalhamento em prismas;
f) estabelecer critérios quantitativos para avaliação da ductilidade das ligações laje-pilar.

1.3 Conteúdo da tese

No Capítulo 1 encontram-se algumas generalidades sobre o tema, incluindo as pesquisas mais recentes sobre o assunto, os objetivos que se pretende alcançar com a tese e a descrição do conteúdo dos demais capítulos.

No Capítulo 2 tem-se uma ampla revisão bibliográfica sobre o tema principal e todos os outros relacionados a ele, que sejam importantes para o entendimento do trabalho. Nessa revisão incluem-se: aspectos teóricos do concreto com fibras, mecanismos alternativos resistentes ao cisalhamento, resistência ao cisalhamento de lajes, pesquisas sobre cisalhamento em vigas de concreto com fibras e pesquisas sobre punção em ligações laje-pilar de concreto com fibras.

No Capítulo 4 estão descritos os ensaios-piloto, necessários para a definição do programa experimental, o planejamento dos demais ensaios, incluindo a descrição dos modelos, dos procedimentos de ensaio e das variáveis estudadas e o estudo de dosagem do concreto utilizado, enfatizando a dosagem do concreto com fibras.

No Capítulo 5 apresentam-se novos dados experimentais e a re-estruturação dos dados existentes sobre a resistência e a ductilidade de ligações laje-pilar em lajes-cogumelo de concreto reforçado com fibras de aço. Além disso, procura-se atender aos objetivos propostos, no que diz respeito a estabelecer conclusões sobre similaridades de comportamento estrutural entre lajes e vigas análogas submetidas ao esforço cortante.

No Capítulo 6 são efetuadas algumas análises teóricas e busca-se contribuir com o aperfeiçoamento de um modelo mecânico existente que explica a transferência de força na ligação laje-pilar, o “Bond Model” de ALEXANDER &
SIMMONDS (1991), por meio da inclusão da parcela referente à contribuição das fibras de aço adicionadas ao concreto.

No *Capítulo 7* encontram-se as conclusões do trabalho e as sugestões para novas pesquisas.
2 Conceitos Fundamentais

2.1 Aspectos teóricos do concreto com fibras

A efetividade do reforço com fibras pode ser avaliada com base nos critérios de melhoria de resistência e de tenacidade do compósito, comparado com a matriz frágil.

As fibras aumentam a resistência do material, promovendo meios de transferência de tensão através das fissuras. Além disso, elas aumentam a tenacidade do material, proporcionando mecanismos de absorção de energia, relacionados com o desligamento e o arrancamento das fibras que formam pontes nas fissuras.

A eficácia das fibras na melhoria das propriedades mecânicas da matriz frágil de cimento é controlada pelos processos pelos quais a força é transferida para as fibras e pelo efeito de “costura” das fissuras, proporcionado pelas fibras em estágios avançados de carregamento. Estes dois aspectos serão estudados separadamente, nos próximos sub-itens.

2.1.1 Mecanismos de transferência de tensão

O entendimento dos mecanismos responsáveis pela transferência de tensão possibilita determinar a curva tensão x deformação do compósito e seu modo de ruptura. Além disso, pode servir de base para o desenvolvimento de compósitos mais eficientes, através de alterações no formato da fibra ou no tratamento de sua superfície.
A transferência de tensão ocorre antes e após a fissuração do compósito. Antes da fissuração, a transferência de tensão por aderência é o mecanismo dominante. Os deslocamentos longitudinais da fibra e da matriz na interface são geometricamente compatíveis. A tensão de aderência desenvolvida na interface é necessária para distribuir o carregamento externo entre as fibras e a matriz, já que possuem diferentes módulos de elasticidade. Desta forma, os dois componentes apresentarão a mesma deformação na interface (Figura 2.1). Segundo BALAGURU & SHAH (1992), quando uma força de tração é aplicada à matriz, parte dela é transferida para as superícies das fibras. Devido à diferença de rigidez entre as fibras e a matriz, aparecem tensões tangenciais ao longo da superfície da fibra, as quais auxiliam na transferência de parte da força aplicada para as fibras. A distribuição de tensões tangenciais ao longo da interface fibra-matriz não é uniforme.

![Figura 2.1 – Representação do arrancamento da fibra da matriz (BENTUR & MINDESS, 1990)](image)

A transição da transferência de tensão por aderência para transferência de tensão por atrito ocorre quando as tensões tangenciais na interface, devidas ao carregamento, excedem a resistência de aderência entre a fibra e a matriz (τ_{au}). Quando esta tensão é superada, inicia-se o desligamento da fibra da matriz e o aparecimento de tensões de atrito na interface da zona de desligamento. A resistência da interface ao atrito denomina-se τ_{fu} (Figura 2.2).
Figura 2.2 – Representação das tensões de cisalhamento na interface (BENTUR & MINDESS, 1990)

Após a fissuração, o mecanismo dominante de transferência de tensão da matriz para as fibras é o atrito. Neste caso, ocorrem deslocamentos relativos entre a fibra e a matriz. A tensão de atrito desenvolvida é uma tensão tangencial, considerada como sendo uniformemente distribuída ao longo da interface fibra-matriz.

Além das tensões tangenciais que ocorrem paralelas à interface fibra-matriz, também devem ser consideradas as tensões normais que surgem na interface, resultantes de alterações de volume, de carregamentos biaxiais e triaxiais, e do efeito de Poisson. A deformação da fibra à tração, na região onde ela entra na matriz, na vizinhança da fissura, é muito maior que a deformação da matriz. Isto resulta em uma contração lateral na fibra, devida ao coeficiente de Poisson, que é maior que a da matriz, gerando tensões normais de tração na interface (Figura 2.3).

As tensões normais podem causar um enfraquecimento da interface e um desligamento prematuro das fibras, podendo reduzir ou eliminar a resistência ao atrito.
Na consideração de efeito de Poisson é importante observar a natureza da fibra: se ela sofre deformação plástica e escoamento antes da ruptura. Quando o comprimento da fibra embutido na matriz excede o comprimento crítico (l_c), ocorre a ruptura da fibra. Se, no entanto, a fibra é dúctil o suficiente, ela irá suportar o arrancamento da matriz, mesmo sendo grande o comprimento embutido.

O comprimento crítico é definido por BENTUR & MINDESS (1990), como sendo o menor comprimento necessário para o desenvolvimento de tensões de tração na fibra iguais à sua resistência. Quando o comprimento da fibra embutido na matriz (ℓ) é menor do que o crítico (ℓ_c), ele não é suficiente para gerar tensão de escoamento ou de ruptura nas fibras, e elas não são utilizadas de forma eficiente. Para fibras retas e lisas, ele pode ser definido conforme a Equação 2.1.

$$
\ell_c = \frac{\sigma_{fu} D}{2 \tau_{fu}}
$$

onde:
- σ_{fu} → resistência última da fibra à tração;
- τ_{fu} → resistência média de aderência na interface fibra-matriz;
- D → diâmetro da seção transversal da fibra.

De acordo com BALAGURU & SHAH (1992), o comprimento crítico é o comprimento embutido que fornece a maior resistência ao arrancamento, sem ocasionar a ruptura da fibra. Quando $\ell \ll \ell_c$, as fibras são tão curtas que são
arrancadas antes que seja desenvolvida uma tensão suficiente para rompê-las. Quando \(\ell >> \ell_c \), o comprimento da fibra embutido na matriz é suficiente para desenvolver uma tensão de tração na fibra igual à sua resistência, e a ruptura do compósito será predominantemente por ruptura da fibra. A alteração do modo de ruptura, de arrancamento para ruptura da fibra, resulta na redução da energia envolvida na ruptura do compósito, uma vez que a energia consumida na ruptura da fibra é bem menor que a consumida no seu arrancamento.

A máxima tenacidade do compósito é obtida quando \(\ell = \ell_c \). Quando o comprimento aumenta, mais fibras se rompem antes de serem arrancadas, e a energia consumida na ruptura do compósito é reduzida. No entanto, o aumento do comprimento é acompanhado por um aumento da resistência das fibras e, consequentemente, da resistência do compósito. Portanto, para \(\ell > \ell_c \), há uma contradição entre os requisitos de resistência e de tenacidade do elemento.

Um modelo analítico para a transferência de tensão deveria levar em consideração todos os fatores: transferência elástica de tensões, atrito, desligamento fibra-matriz e tensões normais. Além de ser complexo, não poderia ser generalizado para todas as fibras. Embora tenham sido desenvolvidos modelos analíticos para fibras lisas, na prática são usadas fibras com outros formatos, como as de aço, as de polipropileno fibrilado ou os feixes de fibras de vidro.

As diversas microestruturas interfaciais da matriz na vizinhança da fibra e as geometrias complexas de algumas fibras podem tornar o processo de arrancamento diferente daquele determinado por modelos baseados na Figura 2.1. Nessas fibras, a ligação com a matriz é resultado da ancoragem mecânica, a qual não pode ser interpretada em termos de tensões interfaciais de cisalhamento. Durante o arrancamento de fibras onduladas, por exemplo, um volume muito maior de matriz é ativado para resistir à extração das fibras (BENTUR & MINDESS, 1990).

2.1.2 Mecanismo de atuação das fibras

Quando o concreto é submetido à tração ou à flexão, a energia se concentra rapidamente nas extremidades das microfissuras existentes, provocando um alargamento incontrolado delas, tendo como provável consequência uma ruína frágil do material.
No concreto reforçado com fibras, as fissuras avançam em direção às fibras, e elas, por sua vez, se opõem à tendência de alargamento das fissuras da matriz, aplicando forças de impedimento através de tensões de aderência na interface fibra-matriz. O resultado é que se torna necessária mais energia para que ocorra a abertura das fissuras, e a ruína torna-se menos frágil, em função da ocorrência de deformações plásticas da fibra, propiciando eventual ganho de ductilidade da estrutura. Com isso, a primeira fissura não consegue levar o compósito à ruína, ou seja, há um aumento da resistência do material à fissuração.

Com o aumento do carregamento externo se formam mais fissuras, até que a matriz é dividida em vários segmentos separados por fissuras. Uma vez fissurada a matriz, a função das fibras passa a ser inibir a propagação das fissuras, formando pontes de ligação entre suas bordas (efeito de “costura” das fissuras), por onde transferem a força de um lado para o outro da matriz. Na fissura, podem ser identificados três trechos distintos (Figura 2.4):

- trecho livre de tração;
- trecho de “costura” das fissuras pelas fibras, no qual a tensão é transferida por atrito das fibras;
- trecho de microfissuração da matriz, mas com suficiente continuidade e engrenamento dos agregados, para que ocorra transferência de tensão na matriz.

Figura 2.4 – Representação de uma fissura (BENTUR & MINDESS, 1990)

Nesta parte do trabalho, é oportuno definir o termo volume crítico de fibras. Segundo HANNANT (1978), o volume crítico de fibras \(V_{f(crit)} \) é definido como sendo
o volume de fibras \((V_f)\) o qual, após a fissuração da matriz, suportará o carregamento que o compósito suportava antes de se fissurar.

Quando \(V_f > V_{f(crit)}\), o modo de ruptura é caracterizado por fissuração múltipla da matriz, e ocorre a uma tensão igual à resistência à primeira fissura do compósito \((E_c\varepsilon_{mu})\), conforme a Figura 2.5.

Após a primeira fissura, o carregamento antes suportado pela matriz é transferido para as fibras, as quais, devido ao seu volume suficientemente grande, podem suportá-lo sem se romper. Carregamentos adicionais levam a mais fissuração da matriz, sem, contudo, levar à ruptura do compósito, ou seja, a resistência ultima do compósito é maior que a da matriz, podendo suportar fissuras distribuídas (SHAH & OUYANG, 1991; BALAGURU & SHAH, 1992).

Figura 2.5 – Curva tensão x deformação do compósito (BENTUR & MINDESS, 1990)

Na Figura 2.5 tem-se:
- \(\sigma_{tu}\) \(\rightarrow\) resistência última da fibra;
- \(\varepsilon_{mu}\) \(\rightarrow\) deformação última da matriz;
- \(\varepsilon_{mc}\) \(\rightarrow\) deformação do compósito no final da fissuração múltipla;
- \(\varepsilon_{cu}\) \(\rightarrow\) deformação última do compósito;
- \(E_c\) \(\rightarrow\) módulo de elasticidade do compósito;
- \(E_f\) \(\rightarrow\) módulo de elasticidade da fibra;
- \(V_f\) \(\rightarrow\) volume percentual de fibras.
Quando o processo de fissuração múltipla termina, a matriz é dividida em fissuras paralelas, e qualquer força adicional causará o estiramento ou o arrancamento das fibras. Nesta etapa, todo o carregamento será suportado pelas fibras, e a ruptura ocorrerá quando elas alcançarem sua capacidade resistente, ou seja, quando a tensão tangencial na interface atingir a resistência de aderência entre a fibra e a matriz. O desligamento das fibras, que se inicia na superfície da fissura, progride ao longo da fibra (Figura 2.6). No trecho desligado, a resistência de atrito entre a fibra e a matriz (τ_f) ainda proporciona alguma resistência ao arrancamento da fibra.

Por outro lado, quando $V_f < V_{f\text{crit}}$, o modo de ruptura será por propagação de uma única fissura, já que o volume de fibras é insuficiente para suportar o carregamento que atuava na matriz antes dela fissurar. Ou seja, a transferência da força da matriz para as fibras provoca o esgotamento da resistência da fibra (BALAGURU & SHAH, 1992). Na Figura 2.7 tem-se uma descrição esquemática das curvas tensão x deformação dos compósitos em função do volume de fibras.
As fibras só contribuem no aumento da resistência do compósito à tração quando adicionadas em volume superior ao crítico. Na prática, o volume crítico de fibras de aço está na faixa de 1 a 3%, sendo difícil de ser incorporado por procedimentos convencionais de mistura. Segundo BALAGURU & SHAH (1992), os volumes de fibras normalmente adicionados, em torno de 1%, contribuem apenas ao comportamento pós-fissuração do compósito, e não no aumento da resistência à tração.

De acordo com BENTUR & MINDESS (1990), o volume percentual crítico de fibras pode ser calculado pelas Equações 2.2a e 2.2b.

\[
V_{f \text{(crit)}} = \frac{\pi \sigma_{mu}}{2 \tau_{fu}} \frac{1}{\ell/D} \quad \text{para fibras alinhadas em duas direções aleatórias} \quad (2.2a)
\]

\[
V_{f \text{(crit)}} = 2 \frac{\sigma_{mu}}{\tau_{fu}} \frac{1}{\ell/D} \quad \text{para fibras distribuídas em três direções aleatórias} \quad (2.2b)
\]

onde:

\(\sigma_{mu}\) → resistência última da matriz à tração direta (0,9 x \(f_{sp}\));

\(\tau_{fu}\) → resistência média de aderência na interface fibra-matriz;

\(\ell/D\) → relação de aspecto da fibra.

Para a determinação da resistência média de aderência na interface fibra-matriz (\(\tau_{fu}\)), o ideal seria que fossem feitos ensaios de arrancamento de fibras. Na falta destes, optou-se por utilizar a Equação 2.3, retirada de SOROUSHIAN & BAYASI (1997), baseada lei dos compósitos. Os autores sugerem valores médios para os parâmetros \(\alpha\), \(\beta\), e \(\gamma\). Os parâmetros \(\alpha\) e \(\beta\) são fatores de eficiência que
consideram a distribuição aleatória das fibras, e o fato que a fissura atravessa a
fibra em um local aleatório do seu comprimento, respectivamente. O parâmetro γ
representa a fração da resistência da matriz que contribui na resistência à tração do
compósito.

$$\tau_{tu} = \frac{\sigma_{ct,u} - \gamma \sigma_m (1 - V_f)}{2\alpha \beta (\ell/D) V_f}$$ \hspace{1cm} (2.3)

onde:

$\sigma_{ct,u}$ → resistência última do compósito à tração direta;

$\gamma = 1,0$;

σ_m → resistência da matriz à tração direta;

$\alpha = \beta = 0,41$;

ℓ/D → relação de aspecto da fibra;

V_f → volume de fibras.

BALAGURU & SHAH (1992) resumem na Figura 2.8 os três tipos de
comportamento que pode ter um compósito fissurado.

(a) A ruína do compósito ocorrerá imediatamente após a ruína da matriz. É
o caso quando são utilizados volumes de fibras bem pequenos.

(b) Depois de ocorrida a fissuração na matriz, a capacidade portante do
compósito diminui, mas ele continua resistindo a forças menores que a
força de pico. Quando a matriz fissura, a força é transmitida do
compósito para as fibras, na interface com a fissura. Conseqüentemente,
a capacidade portante adicional vem das fibras, transferindo a força
através das fissuras. Com o aumento dos deslocamentos, as fibras são
arrancadas da matriz, resultando numa capacidade portante cada vez
menor. Este tipo de compósito não é caracterizado por possuir uma
resistência maior que a da matriz, mas por apresentar um
comportamento dúctil. A área sob a curva tensão x deformação é um
indicativo da ductilidade ou da tenacidade do compósito.

(c) Se o volume de fibras for grande o suficiente, após a fissuração da
matriz as fibras começarão a suportar forças cada vez maiores. Se
existirem fibras em quantidade suficiente atravessando as fissuras, elas
continuarão a resistir a forças cada vez maiores. A rigidez da curva
tensão x deformação diminuirá, devido à perda da contribuição da
matriz. Com o aumento da força, mais fissuras serão formadas. Eventualmente, quando as fibras começarem a ser arrancadas da matriz, a curva se tornará horizontal e a capacidade portante começará a diminuir. Este tipo de ruína se caracteriza pelo bom aproveitamento das propriedades da fibra e da matriz.

Figura 2.8 – Curvas tensão de tração x deformação de matrizes frágeis reforçadas com fibras: (a) Volume pequeno de fibras; (b) Volume intermediário de fibras; (c) Volume alto de fibras. (BALAGURU & SHAH, 1992)

A lei das misturas pode ser aplicada para a determinação do módulo de elasticidade e da resistência do compósito à primeira fissura, dados pelas Equações (2.4) e (2.5):

\[
E_c = E_m V_m + E_f V_f \tag{2.4}
\]

\[
\sigma_c = \sigma_m V_m + \sigma_f V_f \tag{2.5}
\]

onde:

\(E_c, E_f, E_m\) → módulos de elasticidade do compósito, da fibra e da matriz respectivamente;

\(V_m\) → volume percentual da fração da matriz;

\(V_f\) → volume percentual da fração das fibras;

\(\sigma_f\) → tensão na fibra correspondente à deformação na primeira fissura;

\(\sigma_m\) → resistência à tração da matriz na ausência de fibras;

\(\sigma_c\) → resistência do compósito à primeira fissura.
De acordo com BENTUR & MINDESS (1990), substituindo valores usuais nos parâmetros das equações anteriores, verifica-se que o aumento do módulo de elasticidade e da resistência do compósito à primeira fissura em relação à matriz é da ordem de apenas 10 a 20%. Isto vem a confirmar que a maior influência das fibras está após a fissuração, onde a contribuição da matriz é desprezada, em decorrência da fissuração múltipla.

2.2 Mecanismos alternativos resistentes ao cisalhamento em vigas

A ruína de vigas sem armadura transversal se dá por tração excessiva do concreto, estando a resistência ao cisalhamento associada apenas com a estrutura interna do concreto resistente à tração ou com os mecanismos resistentes alternativos.

A ruína normalmente ocorre logo após o aparecimento da fissura inclinada, sendo do tipo frágil. Ela tem sido atribuída ao início da fissuração na região da armadura longitudinal (provocada pela perda de aderência), à ruptura da zona comprimida ou à instabilidade da fissura diagonal (FURLAN JR., 1995; CARDOSO et al., 1998).

Após o surgimento das fissuras de flexão, uma certa parcela do esforço cortante \((V_c) \) é suportada pelo concreto da zona comprimida. A ruptura dessa região não-fissurada é provocada por uma mistura de cisalhamento e de compressão.

Após a fissuração diagonal, aparecem forças de atrito nas fissuras, provocadas pelo engrenamento dos agregados graúdos, responsáveis pela transferência de uma parcela do esforço cortante \((V_a) \).

Quando a força cortante é transmitida ao longo das fissuras para a região inferior da viga, uma certa quantidade dela \((V_p) \) é transferida por meio do efeito de
Conceitos Fundamentais

Os principais fatores que afetam esse efeito são a rigidez à flexão das barras e a resistência do concreto ao redor delas (KIM & PARK, 1996). A Figura 2.9 mostra um esquema desses mecanismos resistentes alternativos.

Com a fissuração diagonal ocorre o aumento da força de pino na armadura longitudinal, que provoca o aparecimento de fissuras nesta região devido à perda de aderência. A carga máxima é atingida quando um ou ambos os mecanismos, atrito e pino, atingem sua resistência limite.

A fissura inclinada torna-se instável quando ocorre o fendilhamento do concreto abaixo da armadura longitudinal. Quando o fendilhamento é evitado com a colocação de armadura adequada, a capacidade resistente da viga aumenta, alterando o mecanismo de ruptura para esmagamento do concreto da zona comprimida. O aumento de resistência estaria associado com o aumento da resistência obtida pela ação de pino.

Figura 2.9 – Transferência da força cortante em vigas sem estribos (FURLAN JR., 1995)

Segundo RUSSO & PULERI (1997), os dois principais mecanismos resistentes ao cisalhamento de vigas sem armadura transversal, isto é, os mecanismos provenientes da contribuição do concreto, são a ação de viga e a ação de arco (Equação 2.6).

\[
V = j\frac{dT}{dx} + T\frac{dj}{dx}
\]

2.6

ação de viga

ação de arco
onde T é a força de tração na armadura, x é o comprimento da viga e j é um valor adimensional, menor do que 1, que faz reduzir o braço de alavanca de um valor igual a d para outro menor, igual a jd.

A ação de viga expressa o comportamento de um elemento fletido, no qual a força de tração atuante na armadura longitudinal varia ao longo do comprimento da viga, mantendo-se constante o braço do momento interno (Figura 2.10a). A ação de arco expressa o comportamento de um elemento estrutural fletido, no qual a força de tração na armadura longitudinal tem seu valor constante, porém o que varia é o braço do momento interno (Figura 2.10b). Nesse caso, a resultante de compressão se move da área carregada, no topo, até ao apoio, na base da viga. Isso está simbolizado na Equação 2.6.

![Figura 2.10 – Mecanismos resistentes do concreto: (a) viga (b) arco (RUSSO & PULERI, 1997)](image)

De acordo com KIM & PARK (1996), em vigas esbeltas, onde a relação a/d é maior do que um valor da ordem de 2,0 a 3,0, a ação de viga é predominante, e a ruína ocorre quando a força de tração diagonal não pode mais ser transmitida através das fissuras diagonais, seja por tensões de tração residuais, por engrenamento dos agregados, ou por efeito de pino da armadura longitudinal (ADEBAR et al., 1997). Com a formação da fissura inclinada, a viga sem armadura
transversal torna-se instável e rompe. Esse tipo de ruptura é normalmente denominado *ruptura por tração diagonal*.

Nessas vigas, 20 a 40% da força cortante é resistida pelo concreto comprimido não fissurado (banzo comprimido), 33 a 55% pelo engrenamento dos agregados ao longo das superfícies rugosas do concreto em cada um dos lados da fissura, e 15 a 25% pela ação de pino da armadura longitudinal de flexão. Esses são os chamados mecanismos resistentes alternativos.

Em vigas relativamente curtas, onde a relação a/d é menor do que um valor da ordem de 2,0 a 3,0, a *ação de arco* é predominante. Se o comprimento de ancoragem das armaduras de flexão for suficientemente adequado, após a formação da fissura inclinada pode ocorrer a *ruptura por esmagamento ou por fendilhamento do concreto*, devido à penetração das fissuras diagonais nessa região. Esse tipo de ruína é normalmente denominado ruína por cisalhamento-compressão. A força aplicada é transmitida diretamente ao apoio, devido à formação de uma biela de compressão ligando a força ao apoio (ação de arco), promovendo uma reserva de resistência ao cisalhamento (LEONHARDT & MÖNNIG, 1978; SILVA, 1991). Portanto, o efeito da resistência do concreto na resistência ao cisalhamento aumenta nas vigas curtas. A ação de arco é influenciada principalmente pela relação a/d, pela resistência do concreto à compressão e pela área de armadura longitudinal de tração.

De acordo com FURLAN JR. (1995), a ação de arco não constitui um mecanismo de transferência de tensões de cisalhamento, já que não há transferência de forças tangenciais a um plano paralelo vizinho, mas alivia os outros mecanismos resistentes (concreto comprimido, engrenamento dos agregados e efeito de pino).

Em vigas de concreto reforçado com fibras, geralmente as fissuras são menos espaçadas que nas vigas de concreto comum. Ao contrário do concreto simples, onde é observada apenas uma fissura diagonal dominante, no concreto com fibras são observadas muitas fissuras diagonais, indicando haver uma redistribuição de tensões através das fissuras. As fibras de aço se tornam mais efetivas após a formação das fissuras de cisalhamento, e continuam a resistir às tensões principais de tração, até o completo arrancamento ou escoamento de todas as fibras, em uma fissura crítica (IMAM et al.,1994.; ADEBAR et al., 1997).

De acordo com LIM & OH (1999), em vigas esbeltas ($a/d \geq 2,5$) sem estribos e reforçadas com fibras de aço, o esforço cortante é transmitido por meio das
seguintes parcelas: efeito do concreto não-fissurado da região comprimida \((V_c)\), efeito de engrenamento dos agregados ao longo da fissura diagonal \((V_a)\), efeito de pino da armadura longitudinal que atravessa esta fissura \((V_p)\) e componentes verticais da força de arrancamento das fibras ao longo da fissura inclinada \((V_{fib})\), conforme mostra a Figura 2.11.

O aumento de resistência ao cisalhamento, devido à presença das fibras, é expresso pela Equação 2.7.

\[
V_{fb} = \sigma_{cu} b (h - x)
\]

onde:

\[
\sigma_{cu} = 0.5 \tau_{fu} \frac{\ell}{D}
\]

sendo \(\sigma_{cu}\) a resistência à tração pós-fissuração do compósito e \(\tau_{fu}\) a resistência de aderência média na interface fibra-matriz (Equação 2.3).

É importante ressaltar que esse modelo foi deduzido para vigas esbeltas, onde a ação de viga é predominante. Além disso, ele é válido para ruptura ocorrida por arrancamento das fibras, ou seja, quando o comprimento das fibras é menor do que o comprimento crítico necessário para causar a ruptura delas.

SWAMY et al. (1993) apresentam um método para cálculo da resistência ao cisalhamento de vigas sem estribos, de concreto com fibras de aço, baseado na analogia de treliça. A parcela do esforço cortante devida à contribuição das fibras, após a formação da fissura crítica, é calculada considerando as bielas com inclinação de 45° (Figura 2.12) e vale:

\[
V_{fb} = 0.9 \sigma_{cu} b d
\]
onde σ_{cu} é a resistência à tração pós-fissuração do compósito.

Quando o comprimento da fibra for menor do que o comprimento crítico ($l_f < l_c$), caso característico de *arrancamento das fibras*, tem-se que:

$$\sigma_{cu} = 0.41\tau_{fu} \frac{D}{l_f} V_f$$ \hspace{1cm} (2.10)

e quando o comprimento da fibra for maior do que o comprimento crítico ($l_f > l_c$), caso característico de *ruptura das fibras*, tem-se que:

$$\sigma_{cu} = 0.41 \left(1 - \frac{\sigma_{fu} D}{4\tau_{fu} l_c}\right)\sigma_{fu} V_f$$ \hspace{1cm} (2.11)

onde σ_{fu} é a resistência última da fibra à tração e τ_{fu} a resistência de aderência média na interface fibra-matriz (Equação 2.3).

O esforço cortante total é dado pela soma da parcela devida à contribuição do concreto, calculada pelas normas de cálculo para vigas sem estribos, mais a parcela devida à contribuição das fibras.

2.3 Pesquisas sobre cisalhamento em vigas de concreto com fibras

IMAN et al. (1994) estudaram a resistência ao cisalhamento de 16 vigas (3600 x 350 x 200 mm) de concreto de alta resistência. Todas as vigas eram armadas à flexão, mas não possuíam estribos. O concreto tinha resistência de aproximadamente 110 MPa. As vigas eram simplesmente apoiadas e sujeitas a carregamentos concentrados em dois pontos. As principais variáveis dos ensaios eram: relação distância de aplicação da força/altura útil da viga (a/d), volume
percentual de fibras de aço com ganchos nas extremidades \((\ell = 60 \text{ mm}; D = 0,80 \text{ mm})\) e taxa de armadura longitudinal de flexão.

Os resultados mostraram que a adição de fibras ao concreto proporcionou aumento da resistência ao cisalhamento e da rigidez das vigas, diminuirias as flechas e transformou a ruína em uma mais dúctil. Baseado nos resultados, foram propostas duas expressões empíricas para estimar a resistência ao cisalhamento de vigas de concreto de alta resistência reforçado com fibras de aço, sem armadura de cisalhamento.

FURLAN JR. & HANAI (1997) investigaram o comportamento resistente de 14 vigas de concreto de seção quadrada \((100 \times 100 \times 1000 \text{ mm})\), com taxas reduzidas de armadura transversal. Eles analisaram as possibilidades de melhoria de desempenho pelo reforço do concreto com fibras curtas de aço e de polipropileno. Foram utilizados sete traços diferentes para a moldagem das vigas, variando-se o tipo (polipropileno, aço de 2,54 cm, aço de 3,81 cm) e o volume de fibras \((0 \text{ a } 2\%)\). A resistência do concreto à compressão permaneceu em torno de 50 MPa em todas as misturas. Foram moldadas duas vigas de cada compósito, uma com estribos e outra sem.

O progresso da fissuração foi relativamente menor no concreto reforçado com fibras, e, conseqüentemente, as flechas reduziram. A configuração das fissuras se apresentou mais intensa nas vigas reforçadas com fibras. Pode-se dizer que o controle mais efetivo da fissuração, proporcionado pelo reforço com fibras, aumenta a contribuição dos mecanismos alternativos resistentes ao cisalhamento.

As fibras promoveram, em geral, aumento da resistência ao cisalhamento, da rigidez após a fissuração e da ductilidade. Nas vigas com taxas de reduzidas de estribos, houve alteração do modo de ruína de cisalhamento para flexão, quando adicionadas as fibras. Nas vigas sem estribos, foi necessário 2% de fibras de aço para proporcionarem maior ductilidade à ruína, passando de cisalhamento-tração para cisalhamento-flexão.

Os autores constataram que as principais diferenças no modo com que as fibras de aço e as de polipropileno atuam no cisalhamento são devidas, principalmente, à diferença no módulo de elasticidade dos dois materiais. Esta diferença se manifesta com evidência nas tensões medidas nos estribos, as quais são menores nas vigas reforçadas com fibras de aço.

KHUNTIA et al. (1999) propuseram uma expressão para estimar a resistência ao cisalhamento de vigas sem estribos, de concreto de baixa ou de alta
resistência, reforçados com fibras de aço. Para tal, eles se basearam nos mecanismos resistentes ao cisalhamento e em várias publicações com resultados experimentais. Os principais parâmetros envolvidos na expressão são: a resistência do concreto à compressão, o fator de forma da fibra, o volume percentual de fibras, a relação distância de aplicação da força/altura útil da viga (a/d), a taxa de armadura longitudinal e o tamanho do modelo.

MORENO JR. & PINTO JR. (1999) estudaram a resistência ao cisalhamento de vigas de concreto de alta resistência reforçado com fibras de aço. Eles ensaiaram três vigas de seção “I” contendo taxa de armadura longitudinal de 3,61%, taxa de armadura transversal de 0,37% e relação distância de aplicação da força/altura útil da viga (a/d) igual a 4,27. A resistência média do concreto à compressão era de 90 MPa aos 28 dias. As fibras de aço possuíam ancoragem em gancho nas extremidades e foram adicionadas nos teores de 40 e 60 kg/m³. As vigas foram carregadas por uma força concentrada aplicada no meio do vão, e dimensionadas para atingir a ruína por cisalhamento.

Os resultados mostraram que as fibras de aço contribuíram de forma significativa na resistência das vigas à força cortante, alterando, inclusive, a sua forma de ruína, de cisalhamento-flexão para flexão pura. Destaca-se, ainda, o efeito benéfico das fibras no controle da fissuração, propiciando menores aberturas de fissuras em serviço, conseqüentemente maior durabilidade. Observou-se que a adição de fibras faz aumentar a parcela do esforço cortante resistida pelo concreto, demonstrando sua importância nos mecanismos de resistência ao cisalhamento. Para as vigas analisadas, essa parcela chegou a duplicar com a adição de 60 kg/m³ de fibras de aço.

LIM & OH (1999) ensaiaram nove vigas de concreto ao cisalhamento, para investigar a influência do reforço com fibras de aço no comportamento mecânico das vigas. As principais variáveis dos ensaios foram o volume percentual de fibras (0 a 2%) e a taxa de armadura transversal constituída por estribos, em relação ao total necessário para combater o cisalhamento (0 a 100%).

Os resultados mostraram que a resistência à fissuração aumentou significativamente com o aumento do volume de fibras, e que houve aumento da resistência ao cisalhamento devido à adição de fibras ao concreto. Eles concluíram que as fibras podem reduzir a quantidade necessária de estribos para uma viga, e que uma combinação ótima das fibras de aço com os estribos pode fornecer a resistência e a ductilidade necessária para o elemento. Os autores propuseram
uma expressão para a determinação da resistência ao cisalhamento de vigas de concreto reforçado com fibras de aço.

2.4 Resistência de lajes à punção

A seguir será descrito como ocorre a ruína por punção de uma laje de concreto armado, sem armadura de combate à punção, apoiada diretamente em um pilar interno.

Quando a laje é carregada, logo se forma uma primeira fissura circunferencial ao redor do pilar, que é uma fissura de flexão devida aos momentos fletores negativos na direção radial. Devido ao aparecimento de momentos fletores negativos na direção circunferencial, formam-se fissuras radiais que se originam na fissura de flexão e se propagam em direção às bordas da laje. Como os momentos fletores na direção radial diminuem rapidamente a partir da região carregada (KINNUNEN & NYLANDER, 1960), é necessário um aumento significativo da carga antes que sejam formadas fissuras circunferenciais na região mais afastada da área carregada. Essas fissuras são formadas da face carregada para a face oposta da laje, com uma inclinação que varia entre 25° e 30° com o plano da laje.

A fissura diagonal de punção se forma à carga de aproximadamente 50% a 70% da carga última. A ligação laje-pilar continua estável nessa situação fissurada, podendo ser descarregada e novamente carregada, sem que a sua resistência seja afetada.

Após a ocorrência da fissura diagonal, na vizinhança da seção crítica da laje ao redor do pilar, a laje suporta o esforço cortante por meio da zona comprimida, do engrenamento dos agregados e da ação de pino da armadura de flexão. Entretanto, como ocorre flexão nas duas direções, a resistência ao cisalhamento de uma laje na seção crítica é bem maior do que a de uma viga. Esse aumento normalmente é atribuído à combinação de três efeitos: a localização da fissura inclinada, a distribuição de tensões tangenciais nas extremidades das fissuras e ao fato das forças devidas à ação de pino nas lajes serem proporcionalmente maiores do que nas vigas, chegando até a 30% do esforço cortante total suportado pela laje (ASCE-ACI, 1974).

A rigidez da laje ao redor da região fissurada tende a controlar a abertura das fissuras diagonais, preservando, assim, a transferência de esforço cortante através do engrenamento dos agregados em situações de cargas elevadas, o que
não acontece nas vigas. Essa rigidez da laje ao redor da região de ruptura significa que os deslocamentos que tenderiam a ocorrer no plano externo das regiões fissuradas são impedidos, e nesse plano se desenvolvem, como resultado, forças de compressão. Essas forças aumentam a resistência da laje à flexão e a resistência ao cisalhamento das seções críticas, mas também diminuem a ductilidade.

A ruína da laje pode ocorrer antes ou depois do desenvolvimento de sua capacidade resistente à flexão. Quando utilizada alta taxa de armadura positiva de flexão, a ruína ocorre por punção, sendo do tipo frágil. Ela pode ocorrer com ou sem escoamento da armadura de flexão. No primeiro caso, a armadura escoa somente na região próxima à área carregada, em cargas muito elevadas.

Quando utilizada baixa taxa de armadura de flexão, geralmente ocorre o escoamento dessa armadura, o qual se inicia na região próxima à área carregada e se propaga gradualmente por toda a armadura tracionada. Charneiras plásticas se formam, estendendo-se de uma borda a outra da laje. Nesses casos ocorre ruína dúctil por flexão, sendo possível uma ruptura secundária por punção, após terem sido formadas as charneiras plásticas.

Com relação à resistência à punção, a importância da taxa de armadura decorre de sua influência sobre o efeito de pino da armadura longitudinal de tração, após a fissuração do lado tracionado da laje.

Além da taxa de armadura de flexão, outros fatores também influenciam a resistência das lajes à punção. Trabalhos como o de SHERIF & DILGER (1996) citam alguns desses fatores:

i) resistência do concreto à compressão (f_c)
A ruína por punção é controlada principalmente pela resistência do concreto à tração, que por sua vez é diretamente proporcional a $\sqrt{f_c}$ ou $\frac{3}{2}f_c$, conforme recomendam as normas ACI 318 (1999) e ABNT (NBR 6118/2001).

MARZOUK & HUSSEIN (1991) investigaram o comportamento resistente à punção de algumas lajes de concreto de alta resistência e recomendaram que a resistência à punção deve ser função direta de $\frac{3}{2}f_c$ e não de f_c, conforme recomenda o ACI 318 (1999), pois este último resulta numa superestimativa da influência da resistência do concreto na resistência à punção quando $f_c > 40$ MPa.

ii) relação entre os lados do pilar (c_1/c_2)
Se o perímetro do pilar for constante e a razão entre o lado maior (c_1) e o lado menor (c_2) aumentar, a resistência ao cisalhamento da ligação diminuirá, pois
predominará flexão em uma das direções e haverá concentração de tensões nos cantos e nos lados menores.

iii) tipo de agregado graúdo do concreto

Para concretos de mesma resistência à compressão, os produzidos com agregados leves possuem menor resistência à tração por compressão diametral do que os produzidos com agregado normal. Portanto, a resistência à punção de lajes de concreto com agregados leve é menor do que a de lajes de concreto com agregado normal.

Aparentemente, a resistência das lajes à punção não depende da quantidade de armadura comprimida de flexão, presente dentro da área carregada. A armadura de flexão localizada no lado comprimido deve ser contínua e atravessar o pilar, de forma a atuar como uma malha de suspensão, segurando a laje no pilar. Essa disposição é bastante efetiva na absorção das tensões residuais de cisalhamento, contribuindo para a melhoria do comportamento pós-ruptura, principalmente pelo efeito de pino, ajudando a evitar um colapso progressivo (LIMA, 2001).

A armadura comprimida aumenta a possibilidade do sistema laje-pilar não sofrer uma ruína por punção, por meio da redistribuição das forças verticais remanescentes. Portanto, um detalhamento adequado dessa armadura pode evitar uma ruína frágil da laje como um todo. A armadura tracionada não consegue proporcionar resistência pós-ruptura, devido à ruptura do seu cobrimento por fendilhamento do concreto.

Os diagramas *força x deslocamento* dos ensaios de lajes submetidas ao puncionamento normalmente exibem estágios de comportamento, delimitados por mudanças significativas da inclinação das curvas, conforme mostra a Figura 2.13.
O estágio I se refere ao concreto não fissurado, onde a força aplicada é proporcional ao deslocamento. As deformações da armadura são pequenas.

O estágio II começa com a ocorrência de fissuração, que começa na superfície tracionada da laje, no contorno do pilar. A rigidez da laje diminui drasticamente. As tensões de tração no concreto são transferidas rapidamente para a armadura, conforme o carregamento aumenta. Mais fissuras aparecem na superfície tracionada e se propagam em direção às bordas da laje. As deformações da armadura aumentam rapidamente e eventualmente podem alcançar o limite de escoamento. Este estágio termina com a formação de curvaturas acentuadas na laje.

No estágio III a rigidez da laje sofre outra redução devido ao aumento do carregamento. A laje sofre deformações plásticas elevadas devidas à propagação do escoamento ao longo da armadura de flexão. O aumento do carregamento só é possível devido à ação de membrana da armadura de flexão. Perto da carga última, a rigidez da laje diminui rapidamente e as fissuras começam a aparecer nas superfícies tracionada e comprimida, na direção circunferencial e ao redor da área carregada. A força concentrada começa a perfurar a laje e, quando as fissuras circunferenciais se tornam muito abertas, a capacidade portante da laje cai bruscamente.

2.5 Pesquisas sobre punção em ligações laje-pilar de concreto com fibras

SWAMY & ALI (1982) examinaram o efeito da adição de fibras de aço na resistência à punção de ligações laje-pilar. Eles ensaiaram dezenove modelos de laje em escala real (1800 x 1800 x 125 mm), simplesmente apoiados nos quatro bordos e carregados no centro por meio do tramo superior de um pilar (150 x 150 x 250 mm). As principais variáveis estudadas foram: tipo (ondulada, gancho, reta), localização e volume (0 a 1,37%) de fibras, quantidade e localização da armadura de flexão e combinação das fibras com a armadura de cisalhamento. A resistência do concreto à compressão foi mantida constante em todos os modelos, em aproximadamente 45 MPa aos 28 dias.

Comparando os modelos de concreto sem fibras com os modelos de concreto com fibras, eles observaram que as fibras promoveram diminuição dos deslocamentos em todas as etapas de carregamento (1% de fibras diminuiu em 30% os deslocamentos de serviço), aumentaram a força última das ligações (1% de fibras aumentou em 40% a força última), e aumentaram as deformações que se mantiveram até a ruína. As fibras retardaram o aparecimento da fissura diagonal e proporcionaram a ocorrência de extensa fissuração na ruína. As fibras transformaram a ruína frágil em uma mais dúctil, empurrando a superfície de ruína para mais longe da face do pilar. As fibras foram muito efetivas controlando a fissuração mesmo depois de atingida a força última, aumentando a resistência residual da ligação, devido ao efeito de membrana após a ruptura. Através da extensa fissuração múltipla, as fibras promoveram melhoria no comportamento pós-fissuração das lajes, aumentando a ductilidade e a absorção de energia (100 a 300% para $V_f=1\%$). Os autores mostraram que colocando concreto com fibras até uma distância de 1,5 h da face do pilar é tão efetivo quanto moldar toda a laje com concreto com fibras. A resistência à punção não se alterou com a redução de 33% da armadura positiva de flexão, quando ela foi concentrada na vizinhança do pilar. Além disso, a redução de 67% da armadura tracionada de flexão pode não
influenciar a resistência à punção, desde que se adicione 1,37% de fibras de aço onduladas.

ALEXANDER & SIMMONDS (1992) ensaiaram seis modelos de ligação laje-pilar, para determinarem o efeito que a adição de diferentes quantidades (0, 30 e 60 kg/m³) de fibras de aço onduladas (ℓ = 50 mm) à mistura, e o efeito que diferentes cobrimentos da armadura tracionada de flexão (11 e 38 mm) provocam na capacidade resistente à punção de tais ligações. A resistência à compressão do concreto foi mantida constante em todos os modelos, em aproximadamente 35 MPa aos 28 dias. Os modelos de lajes tinham dimensões 2750 x 2750 x 150 mm, e os modelos de pilar tinham dimensões 200 x 200 x 200 mm. Os autores observaram que a adição de 0,4% de fibras de aço fez aumentar a resistência à punção das ligações em 20%. A adição de 0,8% de fibras causou um aumento de 30%. Eles também concluíram que as fibras aumentaram a ductilidade das ligações e que a alteração do cobrimento não foi um parâmetro significativo no aumento da resistência à punção.

THEODORAKOPOULOS & SWAMY (1993) estudaram a contribuição de fibras de aço na resistência das ligações laje-pilar de concreto leve, sujeitas à punção. As principais variáveis investigadas nos 20 modelos ensaiados foram: tipo e volume (0 a 1%) de fibra, redução da armadura convencional de flexão da laje, tamanho da área carregada e resistência do concreto à compressão. Os modelos de laje foram feitos em escala reduzida, com dimensões 1800 x 1800 x 125 mm, tendo o tramo superior do pilar altura de 250 mm. As dimensões dos modelos de laje foram escolhidas de modo que eles ficassem compreendidos na região de momento fletor negativo em torno do pilar interno, e dentro da linha de inflexão.

Com relação à geometria da fibra, as onduladas e as de comprimento maior proporcionaram melhores resultados. Eles verificaram que a adição de 1% de fibras na ligação aumentou a força correspondente à primeira fissura, a força correspondente ao escoamento da armadura de flexão e a força última em 30 a 40%. As fibras retardaram o aparecimento da fissura diagonal, proporcionaram a ocorrência de extensa fissuração na ruína, transformaram a ruína frágil em uma mais dúctil, e aumentaram a resistência residual da ligação após a ruína.

TAN & PARAMASIVAN (1994) ensaiaram catorze modelos de ligação laje-pilar interno, para analisar o efeito do concreto reforçado com fibras de aço com ganchos nas extremidades (ℓ = 30 mm; D = 0,50 mm) na resistência à punção das lajes-cogumelo. Os principais parâmetros analisados foram: relação vão
efetivo/altura da laje, volume de fibras (0,31 a 2%), espessura da laje, resistência do concreto à compressão (35 a 60 MPa) e largura da área carregada. Os modelos de laje eram simplesmente apoiados nos quatro bordos, sendo que os cantos ficavam livres para se levantarem. O carregamento era aplicado por meio de uma placa quadrada, simulando um tramo de pilar. Os resultados mostraram que o aumento do volume de fibras, da espessura da laje e da área carregada proporcionaram aumento da resistência à punção e da ductilidade da ligação. O perímetro crítico formou-se a uma distância de 4,5 vezes a altura útil da laje, a partir da face do pilar, com a fissura crítica inclinada de 20° a 60° em relação ao plano da laje. A resistência à punção das lajes com fibras foi comparada com valores provenientes de normas para determinação da resistência à punção de lajes de concreto armado. Dentre as normas analisadas, os resultados provenientes da norma britânica foram os mais próximos dos resultados experimentais.

SHAABAN & GESUND (1994) ensaiaram treze modelos de ligação laje-pilar interno, variando apenas o volume percentual de fibras (0 a 2%) de aço onduladas ($\ell = 25$ mm). Eles observaram um significativo aumento na resistência à punção das lajes de concreto reforçado com fibras de aço. Baseado nos resultados de seus ensaios, os autores determinaram uma expressão para estimar a resistência à punção de lajes-cogumelo de concreto com fibras de aço, modificando a expressão do ACI 318/89 para concreto comum. Observaram ainda que as superfícies de ruína dos modelos com fibras permaneceram troncônicas e apresentaram um ângulo de inclinação médio de 20° com a horizontal, contrariando as prescrições do ACI 318/89, de 45°.

HARAJLI et al. (1995) ensaiaram doze modelos de ligação laje-pilar interno em escala reduzida (650 x 650 mm), com o intuito de investigar o efeito da adição de fibras na resistência de lajes-cogumelo à punção. Os modelos de laje eram simplesmente apoiados nos quatro bordos, sendo que os cantos ficavam livres para se levantarem. A força era aplicada axialmente, por meio de um pilar de seção quadrada (100 x 100 mm), moldado monoliticamente no centro da laje. O carregamento era aplicado controlando-se a velocidade do deslocamento do pistão em 0,5 mm/min. As principais variáveis do estudo foram: tipo de fibras (aço com ganchos nas extremidades e polipropileno), volume de fibras (0 a 2%), relação de aspecto das fibras (60 e 100) e relação vão efetivo/altura das lajes (18 e 26). A resistência do concreto à compressão foi em torno de 30 MPa.
Os autores observaram que, adicionando volumes de 1% e 2% de fibras de aço com ganchos nas extremidades ao concreto, houve um aumento da resistência das lajes à punção, de 22% e 36% respectivamente. Os aumentos na resistência à punção não se mostraram muito sensíveis à variação do vão efetivo/altura das lajes, nem à variação da relação de aspecto das fibras, sendo mais influenciados pelo volume de fibras empregado. A presença de fibras alterou a superfície de ruína das lajes, de quase quadrada para circular, empurrando a superfície da face tracionada da laje para mais longe da face do pilar. A presença de fibras de aço alterou o modo de ruína de algumas lajes, passando de punção pura para punção-flexão ou flexão pura. A adição de 1% de fibras de polipropileno promoveu aumento de apenas 15% na resistência à punção, apesar de ter proporcionado expressivo ganho de ductilidade para a ruína por punção. A partir dos valores experimentais, os autores determinaram uma equação de reta para calcular a resistência à punção em função do volume de fibras, válida para seus modelos ensaiados.

Os autores também obtiveram uma equação para se determinar o aumento da resistência à punção de ligações laje-pilar, devido ao reforço com fibras de aço, reunindo seus resultados experimentais com os de outros pesquisadores. Eles concluíram que o tipo de concreto (leve ou normal), a área de armadura de flexão da laje, a dimensão do cobrimento da armadura de flexão e a geometria da fibra de aço (de boa ancoragem mecânica) não causam praticamente nenhum efeito na parcela da resistência das lajes à punção, devida à presença das fibras de aço.

HUGHES & XIAO (1995) ensaiaram vinte-e-dois modelos de ligação laje-pilar em escala 1:3. As lajes tinham dimensões 860 x 860 mm, com altura variável (80, 65 e 50 mm). A força era aplicada axialmente por meio de um pilar de seção quadrada (132 x 132 mm), moldado monoliticamente no centro da laje, tendo altura do tramo superior 250 mm e do tramo inferior 100 mm, a partir das faces da laje. O carregamento era aplicado controlando-se a velocidade do deslocamento do pistão em 0,3 mm/min. As principais variáveis estudadas foram: a relação vão efetivo/altura das lajes, o volume de fibras (0 a 1,5%), o tipo de fibras (aço e polipropileno) e a presença ou não de armadura convencional de punção.

Os autores observaram que a adição de fibras promoveu aumento da rigidez, da resistência à punção e da resistência à fissuração das ligações. Além disso, forneceu maior ductilidade à ligação, alterando o modo de ruína.

O aumento da rigidez dos modelos com fibras indicou a vantagem das fibras nas condições de utilização da estrutura, diminuindo as flechas das lajes-cogumelo.
A adição de fibras promoveu o aumento da resistência à tração por compressão diametral em todos os compósitos, a qual está diretamente relacionada com a resistência das lajes à punção. Nos modelos com mais de 0,5% de fibras de aço, houve aumento da resistência à fissuração (resistência ao aparecimento da primeira fissura). Nos modelos com fibras houve aumento significativo da resistência das ligações à punção. Nos modelos com armadura convencional de punção, também houve ganho de resistência das ligações à punção, mas não houve aumento da resistência à fissuração. Esta é uma das vantagens das fibras, quando comparadas com a armadura de punção. O aumento da taxa de armadura de flexão reduziu a abertura das fissuras, entretanto não conseguiu alterar o modo de ruína da ligação, pois a resistência à punção aumentou menos que a resistência da laje à flexão. O aumento da resistência à punção mostra que ela é influenciada pela taxa de armadura de flexão da laje, devido aos efeitos de membrana e de pino.

PRISCO & FELICETTI (1997) ensaiaram quinze modelos de ligação laje-pilar interno, com o intuito de investigar o efeito da adição de fibras de aço com ganchos nas extremidades ($\ell = 30$ mm; $D = 0,50$ mm), na resistência à punção de lajes-cogumelo sem nenhuma armadura de flexão. Os modelos de laje eram quase circulares (polígono de 16 lados), com diâmetro de 330mm e espessura de 55 mm. O carregamento era aplicado com velocidade de deformação controlada, por meio de um dispositivo metálico de geometria variável, simulando um tramo de pilar. As principais variáveis do estudo foram: volume de fibras (0,25%, 0,4% e 0,8%) e geometria da ponta do dispositivo de aplicação da força (hemisférico ou plano).

As fibras proporcionaram aumento de ductilidade em todos os modelos, e aumento de resistência à punção nos modelos com volumes maiores (0,8%). A geometria do dispositivo de aplicação da carga alterou o tempo de propagação da força, sendo mais rápida no caso do hemisférico. Nos modelos com fibras, a força máxima foi alcançada antes da fissura crítica ter se propagado para a outra face da laje. A fissura crítica de cisalhamento leva à formação do cone de punção, cuja parte comprimida transmitiria força por engrenamento dos agregados, e cuja parte tracionada transmitiria força pelo efeito de “costura” das fissuras pelas fibras.

ZAMBRANA VARGAS (1997) ensaiou doze modelos de ligação laje-pilar em escala reduzida. As lajes tinham dimensões 800 x 800 x 60 mm, e o pilar tinha seção quadrada (100 x 100 mm), moldado monoliticamente no centro da laje, tendo altura dos tramos superior e inferior de 100 mm, a partir das faces da laje. As principais variáveis dos ensaios foram: volume (0 a 1,5%) de fibras de aço,
utilização de armadura transversal tipo pino (distribuição em cruz), e resistência do
concreto à compressão (30 e 85 MPa).

O autor verificou nos ensaios que o número total de fissuras nos modelos
aumentou com a adição de fibras, e que alguns modelos, previstos para romperem
por punção, tiveram seu modo de ruína alterado para punção-flexão, quando
utilizadas fibras e armadura de combate à punção. O uso de concreto de alta
resistência potencializou uma maior contribuição das fibras. As fibras aumentaram
a resistência das lajes à punção, sendo este aumento mais efetivo quando
utilizadas armaduras transversais de combate à punção (Figura 2.14). A adição de
fibras potencializou um melhor funcionamento da armadura transversal e
possivelmente uma maior contribuição de mecanismos secundários de resistência à
punção (efeito de "costura" das fissuras, do mecanismo de pino etc.). Com isso, há
possibilidade de eventual redução da armadura transversal.

![Figura 2.14 – Valores da força última em função do volume de fibras](ZAMBRANA VARGAS, 1997)

AZEVEDO (1999) ensaiou 12 modelos de lajes-cogumelo em escala
reduzida (1160 x 1160 x 100 mm), com o intuito de investigar o efeito de algumas
variáveis na resistência e na ductilidade dos modelos. A força era aplicada
axialmente por meio de uma placa quadrada (80 x 80 mm) simulando o pilar. O
carregamento era aplicado controlando-se a velocidade do deslocamento do pistão.
As principais variáveis dos ensaios foram: resistência do concreto à compressão
Conceitos Fundamentais

(40 e 80 MPa), volume (0 a 1,5%) de fibras de aço com ganchos nas extremidades ($\ell = 30$ mm; $D = 0,45$ mm), e presença de armadura transversal tipo pino (distribuição radial).

As fibras interferiram sensivelmente na ductilidade das ligações laje-pilar. Alguns modelos, previstos para romperem por punção, tiveram seu modo de ruína alterado para punção-flexão (caso do concreto convencional) ou para flexão predominantemente (caso do concreto de alta resistência), quando utilizadas fibras e armadura de combate à punção, tornando assim menos súbita a ruína do material (Figura 2.15).

![Figura 2.15 – Tipos de ruína (a) punção pura (b) punção-flexão (c) flexão (AZEVEDO, 1999)](image)

A presença de fibras influenciou a formação da superfície de ruína, fazendo com que a ruptura não ocorresse adjacentes ao pilar. As fibras presentes nesse local inibiram a formação das fissuras, transferindo-as para zonas adjacentes, até encontrarem um local frágil onde pudessem se formar.

A autora também constatou, em seus ensaios, aumentos na resistência à punção decorrentes da adição de fibras, sendo mais efetivos quando utilizadas armaduras transversais de combate à punção e concreto de alta resistência. Em todos os casos, ou seja, concreto de baixa e de alta resistência, com e sem armadura transversal, ela observou que o comportamento da carga de ruína em função do volume de fibras é crescente.

A autora determinou uma equação linear que relaciona a força última com o volume de fibras, válida para o tipo e a geometria das fibras utilizadas em sua pesquisa. Em seguida, compilando seus resultados com os de ZAMBRANA VARGAS (1997) e de HARAJLI et al. (1995), tentou determinar uma equação linear que relacionasse o acréscimo de resistência à punção em função do volume de fibras adicionado, válida para qualquer modelo de laje. Entretanto, não houve compatibilidade entre os resultados, e isso não foi possível.
McHARG et al. (2000) estudaram os benefícios do emprego de elevada taxa de armadura de flexão e da adição de fibras de aço no comportamento de ligações laje-pilar. Para isso, ensaiaram seis modelos de ligações em escala real (2,3 x 2,3 x 0,15 m), projetadas para romperem por punção. O pilar tinha seção quadrada de 225 x 225 mm. A resistência do concreto à compressão foi em torno de 30 MPa. O volume de fibras de aço com gancho nas extremidades (l = 30 mm; D = 0,50 mm) foi 0,5% em volume. Os parâmetros investigados foram: utilização de concreto com fibras na região da ligação e concentração de armadura de flexão da laje ao redor do pilar.

Eles concluíram que 0,5% de fibras de aço localizadas até uma distância de 500 mm (aproximadamente 3,3 h, sendo h a espessura da laje) da face do pilar proporcionaram aumento da resistência à punção, da ductilidade e da rigidez pós-fissuração das ligações laje-pilar, e diminuição das aberturas de fissuras nas condições de serviço, e das tensões nas armaduras tracionadas de flexão da laje.

Na Tabela 2.1 apresentam-se as principais características dos trabalhos citados na revisão bibliográfica.

No gráfico da Figura 2.16 observa-se o acréscimo de resistência à punção, normalizada com base na equação da ABNT NBR 6118 (2001), provocado pela adição de fibras de aço ao concreto.

A Equação 2.12 mostra como foi feita a normalização da resistência à punção. A normalização é um procedimento adotado para uniformizar o efeito de variáveis como a resistência do concreto (fc), a altura útil da laje (d), o perímetro crítico (u1) e a taxa de armadura de flexão da laje (ρ), de acordo com um determinado critério de influência. Neste caso, considerou-se como critério a forma como estes parâmetros se apresentam na fórmula dada pela ABNT NBR 6118 (2001) para cálculo da resistência de lajes à punção.

\[
P_{u,\text{normalizado}} = \frac{P_u}{u_1 \cdot d \cdot (1 + \sqrt{20/d}) \sqrt[4]{\rho} f_c^{0.10}}
\]

(2.12)

onde:

\[u_1 \rightarrow \text{perímetro crítico localizado a distância de } 2d \text{ do pilar} \]
<table>
<thead>
<tr>
<th>Referência</th>
<th>Modelo</th>
<th>Tipo de fibra</th>
<th>Relação aspecto</th>
<th>V_i (%)</th>
<th>Modo de Ruptura</th>
<th>c (cm)</th>
<th>d (cm)</th>
<th>u_i (cm)</th>
<th>f_c (MPa)</th>
<th>ρ (%)</th>
<th>P_u (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McHarg et al. 2000</td>
<td></td>
<td></td>
<td>Punção</td>
<td>22,5</td>
<td>12,5</td>
<td>247,08</td>
<td>37,5</td>
<td>0,87</td>
<td>329,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>c/ gancho</td>
<td>60</td>
<td>0</td>
<td>Punção</td>
<td>22,5</td>
<td>12,5</td>
<td>247,08</td>
<td>30</td>
<td>0,87</td>
<td>349,00</td>
<td></td>
</tr>
<tr>
<td>FSB</td>
<td>c/ gancho</td>
<td>60</td>
<td>0,5</td>
<td>Punção</td>
<td>22,5</td>
<td>12,5</td>
<td>247,08</td>
<td>39</td>
<td>0,87</td>
<td>422,00</td>
<td></td>
</tr>
<tr>
<td>HSC.S1</td>
<td>c/ gancho</td>
<td>67</td>
<td>0,75</td>
<td>Punção</td>
<td>8</td>
<td>8</td>
<td>132,53</td>
<td>86,65</td>
<td>1,57</td>
<td>190,72</td>
<td></td>
</tr>
<tr>
<td>HSC.S2</td>
<td>c/ gancho</td>
<td>67</td>
<td>1,5</td>
<td>Punção</td>
<td>8</td>
<td>8</td>
<td>132,53</td>
<td>37,5</td>
<td>1,57</td>
<td>197,61</td>
<td></td>
</tr>
<tr>
<td>L01</td>
<td>c/ gancho</td>
<td>60</td>
<td>0</td>
<td>Punção</td>
<td>10</td>
<td>4</td>
<td>90,26</td>
<td>26</td>
<td>1,73</td>
<td>80,00</td>
<td></td>
</tr>
<tr>
<td>L02</td>
<td>c/ gancho</td>
<td>36</td>
<td>0,75</td>
<td>Punção</td>
<td>8</td>
<td>8</td>
<td>132,53</td>
<td>30,80</td>
<td>1,57</td>
<td>197,61</td>
<td></td>
</tr>
<tr>
<td>L03</td>
<td>c/ gancho</td>
<td>36</td>
<td>1,5</td>
<td>Punção</td>
<td>8</td>
<td>8</td>
<td>132,53</td>
<td>34,90</td>
<td>1,57</td>
<td>206,81</td>
<td></td>
</tr>
<tr>
<td>L04</td>
<td>c/ gancho</td>
<td>36</td>
<td>1,5</td>
<td>Punção</td>
<td>8</td>
<td>8</td>
<td>132,53</td>
<td>39</td>
<td>1,57</td>
<td>206,81</td>
<td></td>
</tr>
<tr>
<td>L05</td>
<td>c/ gancho</td>
<td>36</td>
<td>1,5</td>
<td>Punção</td>
<td>8</td>
<td>8</td>
<td>132,53</td>
<td>34,90</td>
<td>1,57</td>
<td>206,81</td>
<td></td>
</tr>
<tr>
<td>L06</td>
<td>c/ gancho</td>
<td>36</td>
<td>1,5</td>
<td>Punção</td>
<td>8</td>
<td>8</td>
<td>132,53</td>
<td>39</td>
<td>1,57</td>
<td>206,81</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>--</td>
<td>--</td>
<td>0</td>
<td>Punção</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>52</td>
<td>1,00</td>
<td>89,00</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>reta 1</td>
<td>95</td>
<td>1</td>
<td>Punção</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>56</td>
<td>1,00</td>
<td>108,00</td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>reta 2</td>
<td>100</td>
<td>0,45</td>
<td>Punção</td>
<td>10,5</td>
<td>5,5</td>
<td>109,11</td>
<td>31,4</td>
<td>1,12</td>
<td>117,73</td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>ondulada 1</td>
<td>92,3</td>
<td>1</td>
<td>Flexão</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>39</td>
<td>1,00</td>
<td>105,00</td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>ondulada 1</td>
<td>92,3</td>
<td>1,5</td>
<td>Punç-Flex</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>53</td>
<td>1,00</td>
<td>127,00</td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td>ondulada 2</td>
<td>80</td>
<td>1</td>
<td>Flexão</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>48</td>
<td>1,00</td>
<td>116,00</td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>ondulada 1</td>
<td>92,3</td>
<td>0,5</td>
<td>Punç-Flex</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>40,3</td>
<td>0,87</td>
<td>20,90</td>
<td></td>
</tr>
<tr>
<td>S11</td>
<td>ondulada 1</td>
<td>92,3</td>
<td>1,5</td>
<td>Flexão</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>40,7</td>
<td>0,87</td>
<td>23,70</td>
<td></td>
</tr>
<tr>
<td>S12</td>
<td>ondulada 1</td>
<td>92,3</td>
<td>1</td>
<td>Punção</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>39</td>
<td>1,00</td>
<td>105,00</td>
<td></td>
</tr>
<tr>
<td>S13</td>
<td>ondulada 1</td>
<td>92,3</td>
<td>1,5</td>
<td>Flexão</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>40,7</td>
<td>0,87</td>
<td>23,70</td>
<td></td>
</tr>
<tr>
<td>S14</td>
<td>ondulada 1</td>
<td>92,3</td>
<td>1</td>
<td>Punção</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>39</td>
<td>1,00</td>
<td>105,00</td>
<td></td>
</tr>
<tr>
<td>S15</td>
<td>ondulada 1</td>
<td>92,3</td>
<td>1</td>
<td>Punção</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>39</td>
<td>1,00</td>
<td>105,00</td>
<td></td>
</tr>
<tr>
<td>S16</td>
<td>ondulada 1</td>
<td>92,3</td>
<td>1</td>
<td>Punção</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>41,6</td>
<td>0,00</td>
<td>32,59</td>
<td></td>
</tr>
<tr>
<td>S17</td>
<td>ondulada 1</td>
<td>92,3</td>
<td>1</td>
<td>Punção</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>41,6</td>
<td>0,00</td>
<td>32,59</td>
<td></td>
</tr>
<tr>
<td>S18</td>
<td>ondulada 1</td>
<td>92,3</td>
<td>1</td>
<td>Punção</td>
<td>13,2</td>
<td>5,2</td>
<td>118,14</td>
<td>41,6</td>
<td>0,00</td>
<td>32,59</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 2.1 – Características dos trabalhos compilados
Tabela 2.2 (continuação) – Características dos trabalhos compilados

<table>
<thead>
<tr>
<th>Referência</th>
<th>Modelo</th>
<th>Tipo de fibra</th>
<th>Relação aspecto</th>
<th>V_f (%)</th>
<th>Modo de Ruptura</th>
<th>c (cm)</th>
<th>d (cm)</th>
<th>u_1 (cm)</th>
<th>f_p (MPa)</th>
<th>ρ (%)</th>
<th>P_c (kN)</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-1</td>
<td>--</td>
<td>0 Punção</td>
<td>0</td>
<td>15</td>
<td>10 185,66</td>
<td>44,2</td>
<td>0,63</td>
<td>173,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-2</td>
<td>ondulada</td>
<td>100 0,5</td>
<td>15</td>
<td>10 185,66</td>
<td>42,5</td>
<td>0,63</td>
<td>225,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-3</td>
<td>ondulada</td>
<td>100 1</td>
<td>15</td>
<td>10 185,66</td>
<td>44,56</td>
<td>0,63</td>
<td>247,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-4</td>
<td>ondulada</td>
<td>100 1</td>
<td>15</td>
<td>10 185,66</td>
<td>46,67</td>
<td>0,63</td>
<td>224,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theodorako-</td>
<td>--</td>
<td>0 Punção</td>
<td>10</td>
<td>10 165,66</td>
<td>45,8</td>
<td>0,65</td>
<td>150,30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>& Swamy</td>
<td>(esc. real)</td>
<td>ondulada</td>
<td>100 1</td>
<td>10 165,66</td>
<td>44,05</td>
<td>0,59</td>
<td>216,60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-5</td>
<td>ondulada</td>
<td>100 0,5</td>
<td>20</td>
<td>10 205,66</td>
<td>45,5</td>
<td>0,59</td>
<td>191,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-6</td>
<td>ondulada</td>
<td>100 1 Flexão</td>
<td>20</td>
<td>10 205,66</td>
<td>42,8</td>
<td>0,59</td>
<td>259,80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-7</td>
<td>rectangular</td>
<td>60 1</td>
<td>15</td>
<td>15 185,66</td>
<td>45,1</td>
<td>0,63</td>
<td>217,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-8</td>
<td>ondulada</td>
<td>100 1,0</td>
<td>15</td>
<td>15 185,66</td>
<td>41,85</td>
<td>0,63</td>
<td>235,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-9</td>
<td>ondulada</td>
<td>70 1</td>
<td>15</td>
<td>15 185,66</td>
<td>43,73</td>
<td>0,63</td>
<td>238,90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-10</td>
<td>ondulada</td>
<td>90 1</td>
<td>15</td>
<td>15 185,66</td>
<td>39,05</td>
<td>0,63</td>
<td>238,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-11</td>
<td>ondulada</td>
<td>70 1</td>
<td>15</td>
<td>15 185,66</td>
<td>34,9</td>
<td>0,63</td>
<td>228,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-12</td>
<td>ondulada</td>
<td>70 1 Flexão</td>
<td>15</td>
<td>15 185,66</td>
<td>58,56</td>
<td>0,63</td>
<td>268,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-13</td>
<td>ondulada</td>
<td>70 1</td>
<td>15</td>
<td>15 185,66</td>
<td>17,75</td>
<td>0,63</td>
<td>166,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-14</td>
<td>elíptica</td>
<td>70 1</td>
<td>15</td>
<td>15 185,66</td>
<td>34,8</td>
<td>0,63</td>
<td>230,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-15</td>
<td>elíptica</td>
<td>70 1</td>
<td>15</td>
<td>15 185,66</td>
<td>34,9</td>
<td>0,63</td>
<td>228,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-16</td>
<td>elíptica</td>
<td>70 1,2 Punção</td>
<td>15</td>
<td>15 185,66</td>
<td>17,75</td>
<td>0,63</td>
<td>166,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-17</td>
<td>elíptica</td>
<td>70 1,2</td>
<td>15</td>
<td>15 185,66</td>
<td>17,75</td>
<td>0,63</td>
<td>166,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-18</td>
<td>elíptica</td>
<td>70 1,2</td>
<td>15</td>
<td>15 185,66</td>
<td>17,75</td>
<td>0,63</td>
<td>166,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P11F0</td>
<td>ondulada</td>
<td>50 mm 0,4</td>
<td>20</td>
<td>13,2 245,87</td>
<td>33,2</td>
<td>0,46 259,00</td>
<td>c = 11 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P11F31</td>
<td>ondulada</td>
<td>50 mm 0,8</td>
<td>20</td>
<td>13,2 245,87</td>
<td>35,8</td>
<td>0,46 324,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P11F66</td>
<td>ondulada</td>
<td>50 mm 0,8</td>
<td>20</td>
<td>13,2 245,87</td>
<td>35</td>
<td>0,46 345,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P38F0</td>
<td>ondulada</td>
<td>50 mm 0,4</td>
<td>20</td>
<td>10,5 211,94</td>
<td>35,6</td>
<td>0,46 264,00</td>
<td>c = 36 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P38F34</td>
<td>ondulada</td>
<td>50 mm 0,4</td>
<td>20</td>
<td>10,5 211,94</td>
<td>35,6</td>
<td>0,46 308,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P38F69</td>
<td>ondulada</td>
<td>50 mm 0,8</td>
<td>20</td>
<td>10,5 211,94</td>
<td>35</td>
<td>0,46 330,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-1</td>
<td>--</td>
<td>0 Punção</td>
<td>15</td>
<td>10 185,66</td>
<td>45</td>
<td>0,63 197,70</td>
<td>12#10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-2</td>
<td>ondulada</td>
<td>100 0,6</td>
<td>15</td>
<td>10 185,66</td>
<td>45</td>
<td>0,63 243,60</td>
<td>distrib.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-3</td>
<td>ondulada</td>
<td>100 0,9</td>
<td>15</td>
<td>10 185,66</td>
<td>45</td>
<td>0,63 262,90</td>
<td>uniform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-4</td>
<td>ondulada</td>
<td>100 1,2</td>
<td>15</td>
<td>10 185,66</td>
<td>45</td>
<td>0,63 281,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-5</td>
<td>--</td>
<td>0 Punção</td>
<td>15</td>
<td>10 185,66</td>
<td>45</td>
<td>0,08 221,70</td>
<td>#810 viz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-6</td>
<td>ondulada</td>
<td>100 0,9 Punção</td>
<td>15</td>
<td>10 185,66</td>
<td>45</td>
<td>0,08 249,00</td>
<td>pilar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-7</td>
<td>ondulada</td>
<td>100 0,9 Punção</td>
<td>15</td>
<td>10 185,66</td>
<td>45</td>
<td>0,08 249,00</td>
<td>#10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8</td>
<td>ondulada</td>
<td>83,3 0,9 Punção</td>
<td>15</td>
<td>10 185,66</td>
<td>45</td>
<td>0,08 236,70</td>
<td>laterais</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-9</td>
<td>ondulada</td>
<td>83,3 0,9 Punção</td>
<td>15</td>
<td>10 185,66</td>
<td>45</td>
<td>0,08 236,70</td>
<td>da laje</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No gráfico da Figura 2.16 não foram colocados todos os resultados experimentais encontrados na Tabela 2.1, apenas os relativos aos ensaios realizados com o objetivo de estudar a influência da variável volume percentual de fibras na resistência à punção. A tabela mostra também o efeito de outras variáveis em alguns trabalhos, como relação de aspecto e tipo de fibras. Nas sequências em que alguns valores foram descartados do gráfico, os considerados estão sublinhados com a cor amarela.
Figura 2.16 – Compilação dos resultados experimentais dos autores citados
3 Modelos Mecânicos para Punção em Lajes

Este capítulo trata de um assunto que também faz parte da revisão bibliográfica, mas que, devido à sua extensão e complexidade, optou-se por separá-lo em um capítulo à parte.

3.1 Modelo de KINNUNEN & NYLANDER (1960)

KINNUNEN & NYLANDER (1960) propuseram o primeiro modelo teórico para determinação da resistência à punção de lajes-cogumelo de concreto armado. O modelo foi elaborado para lajes sem armadura de cisalhamento, armadas somente à flexão. Ele foi baseado em ensaios feitos em lajes circulares com carregamento aplicado no centro, por pilares circulares, sendo estudados três tipos
de disposição da armadura de flexão: circunferencial, circunferencial e radial em
conjunto e armadura disposta em malha (duas direções ortogonais).

3.1.1 Hipóteses

i) O modelo considera a ligação dividida em três partes: pilar, cascas
cônicas e segmentos de laje.

ii) Cada segmento é sustentado por uma casca cônica comprimida que sai
do pilar e vai até a base da fissura de cisalhamento. A casca cônica tem espessura
variável e apresenta tensões de compressão iguais nas duas extremidades.

iii) Os segmentos de laje, delimitados pela fissura de cisalhamento, pelas
fissuras radiais e pelo bordo da laje rotacionam como corpos rígidos em torno de
eixos horizontais que passam pela base da fissura de cisalhamento.

3.1.2 Apresentação do modelo

A Figura 3.1 apresenta as forças atuantes nos elementos, oriundas da
rotação (ψ) da laje. As forças são as seguintes:

- Força radial do concreto (F_{cr}): atua no segmento de laje, abaixo da
 origem da fissura de cisalhamento, na seção próxima ao pilar.
 Representa a contribuição do concreto na resistência à punção.

- Força tangencial do concreto (F_{ct}): atua no segmento de laje, abaixo do
 centro de rotação, na direção tangencial. Resultante radial: F_{ct}Δψ.

- Força tangencial da armadura de flexão (F_{st}): atua na armadura de flexão
 do segmento de laje, na direção tangencial. Resultante radial: F_{st}Δψ.

- Força radial da armadura de flexão (F_{sr}): atua na armadura de flexão, na
cunha, na direção radial.
Figura 3.1 – Modelo mecânico de KINNUNEN & NYLANDER (1960)
3.1.3 Determinação das forças

a) Força radial do concreto (F_{cr})

A força radial atuante na casca cônica comprimida é dada por:

\[F_{cr} = 2\pi (r_o + x) 2c_i \sigma_i \]

sendo

\[2c_i = \frac{x(1 - \tan \alpha) \cos \alpha}{\left(1 + \frac{x}{2r_o}\right)} \]

onde \(\sigma_i \) é a tensão no tronco de cone.

A força vertical transmitida através da casca cônica é dada por:

\[P = F_{cr} \sin \alpha = 2\pi r_o x d \frac{1 + \frac{x}{2r_o}}{\left(1 + \frac{x}{2r_o}\right)^2} \sigma_i f(\alpha) d^2 \]

onde

\[f(\alpha) = \sin \alpha \cos \alpha (1 - \tan \alpha) \]

b) Força tangencial da armadura de flexão (F_{st})

Será tratado apenas o caso de armadura de flexão disposta em duas direções ortogonais.

A deformação tangencial da armadura de flexão é determinada pela rotação da laje como um corpo rígido.

\[\varepsilon_{st} = \frac{\Delta r_s}{r_s \varepsilon_{sy}} = \frac{\psi}{r_s} (d - x) \]

Portanto, tem-se:

\[r_{sy} = \psi \frac{(d - x)}{\varepsilon_{sy}} \]
A resultante das forças provenientes da armadura de flexão é:

\[
F_{si} = \sigma_{sy} \left[\sum_{r_1}^{r_y} A_z + r_y \sum_{r_1}^{r_y} \frac{A_z}{r} \right]
\]
(3.7)

onde

\[
A_z = \rho \, d \, d_r
\]
(3.8)

Portanto, a componente radial da força tangencial da armadura de flexão \((F_{st} \Delta \phi)\) é dada por:

\[
F_{st} = \rho \, \sigma_{sy} \, d^2 \left[\frac{r_y}{d} - \frac{r_1}{d} \right] + \frac{r_y}{d} \ln \frac{r_3}{r_y}
\]
para \(r_y > r_1\)

\[
F_{st} = \rho \, \sigma_{sy} \, d^2 \frac{r_y}{d} \ln \frac{r_3}{r_y}
\]
para \(r_y \leq r_1\)

sendo

\[
r_1 = \frac{\rho \, \sigma_{sy} \, d}{7.5 + \frac{f}{20}}
\]
(3.10)

c) Força radial da armadura de flexão \((F_{sr})\)

Aqui também será analisado apenas o caso de armadura de flexão disposta ortogonalmente.

\[
F_{sr} = \rho \, \sigma_{sy} \, d^2 \frac{r_y}{d} \Delta \phi
\]
para \(r_y > r_1\)

\[
F_{sr} = \rho \, \sigma_{sy} \, d^2 \frac{r_y}{d} \Delta \phi
\]
para \(r_y \leq r_1\)

(3.11)

d) Força tangencial do concreto \((F_{ct})\)

A deformação tangencial do concreto comprimido da superfície da laje é dada a partir da rotação do diagrama de corpo rígido:
\[\varepsilon_{\alpha} = \frac{\Delta r_c}{r_c} = \frac{\Delta x}{x} \]
(3.12)
e a tensão correspondente sob a fissura radial é dada por:

\[\sigma_{\alpha} = \psi k_2 \frac{E_c x}{r} \]
(3.13)

onde \(k_2 \) é um coeficiente que expressa o fato da tensão de compressão variar entre as fissuras radiais. O valor de \(k_2 \) é adotado pelos autores como igual a 1.

A força tangencial de compressão do concreto é obtida por integração na direção vertical de 0 a \(x \) e na direção radial de \(r_0 + x \) a \(r_3 \), sendo dada por:

\[F_{ct} = \frac{1}{2} E_c d^2 \left(\frac{x}{d} \right)^2 \psi \ln \frac{r_3}{r_o + x} \]
(3.14)

3.1.4 Condições de equilíbrio

As condições de equilíbrio determinam a carga de ruptura e as deformações últimas das lajes. São elas:

\[(K_y \tan \alpha - 1) \frac{1 - \tan \alpha}{1 + \tan^2 \alpha} = \frac{1}{2(2,35)} \left(1 + \left(\frac{x}{d} \frac{d}{2r_0} \right) \ln \frac{r_3}{r_o + x} \right) \]
(3.15)

onde:

\[K_y = \frac{r_3 - r_o}{d} - \frac{x}{3} \]
(3.16)

\[P = F_{ct} \cos \alpha \]
(3.17)

\[F_{ct} \Delta \phi + F_{ct} = P \frac{\Delta \phi}{2\pi} K_y \]
(3.18)

3.1.5 Critérios de ruptura

A ruptura da laje ocorre quando a deformação tangencial do concreto abaixo da fissura de cisalhamento atinge um determinado valor limite na base da laje, a distância \(x \) da face do pilar. Esse valor limite é dado por:

\[\varepsilon_{\alpha(a+x)} = \frac{\psi}{1 + \frac{r_0}{d} \frac{d}{x}} = 0,0035 \left(1 - 0,11 \frac{r_o}{d} \right) \quad \text{para} \quad 0 < \frac{r_o}{d} < 1 \]
Com o valor da deformação tangencial calcula-se a tensão no tronco de cone:

\[
\sigma_t = \frac{2.35 E_c}{d} \varepsilon_{\alpha(x)}
\]

(3.20)

3.1.6 Método de cálculo

A carga de ruptura é obtida por processo iterativo. Deve-se inicialmente adotar um valor para \(\frac{x}{d} \) e calcular \(P \) pela Equação 3.3, com \(\alpha \) dado pela Equação 3.15 e \(\sigma_t \) calculado pela Equação 3.20. Determina-se \(\psi \) pela Equação 3.19 e calcula-se a força total da armadura de flexão (\(F_{st} \Delta \varphi + F_{sr} \)). Aplica-se a condição de equilíbrio expressa na Equação 3.18 e determina-se novamente \(P \), que deve ser igual ao \(P \) determinado anteriormente. Caso isso não aconteça, deve-se adotar outro valor para \(\frac{x}{d} \) e reiniciar o processo.

3.1.7 Ampliação do modelo

KINNUNEN (1963) ampliou essa modelagem considerando os efeitos de pino e de membrana. Esses efeitos foram avaliados através da comparação entre resistências de lajes com armadura de flexão em forma de anéis e de lajes com armadura de flexão radial e circunferencial, ensaiadas por KINNUNEN & NYLANDER (1960). A comparação indicou 35% de contribuição desses efeitos na carga última quando a laje é armada em duas direções ortogonais. O autor considerou os benefícios das forças de membrana e de pino por meio do fator \(\chi = 0.3 \) nas equações do critério de ruptura, modificando-as para:

\[
e_{\alpha(x)} = 0.0035 \left(1 - 0.22 \frac{r_o}{d}\right) (1 + \chi)
\]

para \(0 < \frac{r_o}{d} < 2 \)

(3.21)
3.2 Modelo de SHEHATA (1985)

SHEHATA (1985) propôs um modelo mecânico de punção para lajes-cogumelo sem armadura de cisalhamento, baseado no modelo de KINNUNEN & NYLANDER (1960).

3.2.1 Hipóteses

i) Nos primeiros estágios de carregamento aparece uma fissura circunferencial tangencial no topo do pilar. Com o aumento do carregamento, são formadas fissuras radiais que se iniciam na circunferencial e dividem a laje em segmentos radiais. Cada segmento é limitado pela fissura circunferencial, por duas fissuras radiais e pelo bordo da laje (Figura 3.2).

ii) Os segmentos radiais giram em torno de um centro de rotação localizado na face do pilar, ao nível da linha neutra, e se deslocam de forma quase linear.

iii) Uma fissura interna de cisalhamento surge na laje para carregamentos em torno de 50% a 70% da carga última, devido a tensões radiais de cisalhamento entre a armadura e o concreto em cada segmento radial. Essa fissura interna tem inclinação de 20° em lajes armadas em duas direções e 30° em lajes com armadura circular.

iv) Cada segmento radial é suportado por uma força inclinada na face do pilar \((F_c)\) com inclinação máxima de 20° e por forças de pino \((D)\) provenientes da parcela da armadura de flexão que não tenha escoado no raio limitado pela fissura de cisalhamento \((r_w)\).

v) O concreto comprimido no bordo inferior da laje próximo à face do pilar é considerado no estado elasto-plástico, conforme o diagrama da Figura 3.3.
Figura 3.2 – Modelo mecânico de SHEHATA (1985)
Na Figura 3.2 estão representadas as forças atuantes no modelo. São elas:

- **Força radial do concreto (F_{cr}):** atua no segmento de laje, abaixo da origem da fissura de cisalhamento, na seção próxima ao pilar. Representa a contribuição do concreto na resistência à punção.
- **Força tangencial do concreto (F_{ct}):** atua no segmento de laje, abaixo do centro de rotação, na direção tangencial. Resultante radial: F_{ct}Δϕ.
- **Força tangencial da armadura de flexão (F_{st}):** atua na armadura de flexão do segmento de laje, na direção tangencial. Resultante radial: F_{st}Δϕ.
- **Força radial da armadura de flexão (F_{sr}):** atua na armadura de flexão, na cunha, na direção radial.
- **Força de pino da armadura de flexão positiva (D).**

3.2.2 Determinação das forças

a) Força radial do concreto (F_{cr})

A força radial que atua no concreto junto ao pilar é:

\[
F_{cr} = \sigma_c A_c = \eta f_c A_c
\]

sendo:

\[
\eta = 1 + S_y
\]

\[
A_c = 2\pi \left[r_o - \frac{x \sin 70^\circ}{2 \sin(110^\circ - \alpha)} \right] \frac{x \sin 70^\circ}{\sin(110^\circ - \alpha)}
\]
onde σ_b é a resistência do tronco de pirâmide formado junto ao pilar (Figura 3.4), S_{gr} o gradiente de tensões na zona de ruptura e A_c a área normal à força atuante inclinada F_{cr}.

![Figura 3.4 – Tronco de cone (SHEHATA, 1985)](image)

b) **Força tangencial do concreto (F_{ct})**

A deformação tangencial do concreto é determinada a partir da rotação de corpo rígido dos segmentos radiais.

$$\varepsilon_{ct} = \frac{\psi x}{r} \quad (3.25)$$

As força tangenciais do concreto são obtidas do diagrama de tensões associado às deformações do concreto (Figura 3.5). Elas são obtidas pela integração da área de um elemento circular de largura dr situado no raio r.

$$F_{ct} = \int_{r_c}^{r} k_c f_c k_x x \, dr \quad (3.26)$$

onde k_c e k_x são definidos em função do bloco de tensões.
Figura 3.5 – Diagramas de deformação do aço e do concreto (SHEHATA, 1985)
Integrando a Equação 3.26 determina-se F_{ct} para três intervalos de raios:

- **Caso 1:** $r_0 \leq r_{cu}$

$$F_{ct} = f_c x^2 \left[k_c \frac{\psi}{\varepsilon_{ct}} - \frac{0.723 r_0}{x} + \frac{0.425 \psi}{\varepsilon_{ct}} \ln \left(\frac{r_0}{r_{ct}} \right) \right]$$

onde:

$$k_c = 0.425 + \frac{0.298 \ln(\alpha_c)}{\alpha_c}$$

$$\alpha_c = \frac{\varepsilon_{cu}}{\varepsilon_{ct}}$$

- **Caso 2:** $r_{ct} \geq r_0 \geq r_{cu}$

$$F_{ct} = f_c x^2 \left[\left(0.425 - \frac{0.298 \ln(\alpha_c)}{\alpha_c - 1} \right) \frac{\psi}{\varepsilon_{ct}} - \frac{r_0}{x} + \frac{0.298 \psi}{\varepsilon_{ct}} \ln \left(\frac{r_0}{r_{ct}} \right) + 0.425 \frac{\psi}{\varepsilon_{ct}} \ln \left(\frac{r_{ct}}{r_{ct}} \right) \right]$$

- **Caso 3:** $r_0 \geq r_{ct}$

$$F_{ct(r_0 \rightarrow r_0)} = 0.425 f_c x^2 \ln \left(\frac{r_0}{r_0} \right)$$

c) Forças da armadura de flexão

Sendo r_y o raio no qual a armadura de flexão escoa e r_w o raio do prolongamento da fissura de punção na face superior da laje, tem-se que:

- para $r_y < r_w$ (estado elástico)

$$r_y = \frac{\psi (d - x)}{\varepsilon_{sy}}$$

$$r_w = r_0 + (d - x) \cot 20° \quad \text{para lajes armadas em duas direções}$$

$$dF_{st} = \rho_1 \sigma_s d r$$
\[F_{ul} = \int_{r_u}^{r_l} \rho_i f_y d r_y \ln \left(\frac{r_y}{r_w} \right) \]

(3.35)

\[dF_{sr} = \rho_r \sigma_s d r d\phi \]

(3.36)

\[F_{sr} = \int_{r_u}^{r_l} \rho_i f_y d r_y \ln \left(\frac{r_y}{r_w} \right) \Delta \phi \]

(3.37)

sendo \(\rho_t \) e \(\rho_r \) as taxas de armadura nas direções tangencial e radial respectivamente.

Fazendo o equilíbrio de momentos na cunha localizada entre a fissura circunferencial mais interna, duas fissuras radiais e a fissura de flexão, e considerando \(\rho_i = \rho_r = \rho \), tem-se que:

\[F_{ul} (d - x) = D (r_w - r_o) \]

(3.38)

\[D = \left(\frac{d - x}{r_w - r_o} \right) \rho f_y d r_y \ln \left(\frac{r_w}{r_y} \right) \Delta \phi \]

(3.39)

onde:\n\[\left(\frac{d - x}{r_w - r_o} \right) = \tan 20^\circ \approx 0,364 \]

(3.40)

\[D = 0,364 \rho f_y d r_y \ln \left(\frac{r_w}{r_y} \right) \Delta \phi \]

(3.41)

- para \(r_y \geq r_w \) (estado elasto-plástico)

\[F_{ul} = \int_{r_u}^{r_l} \rho_i f_y d r + \int_{r_u}^{r_l} \rho_i \sigma_s d r = \int_{r_u}^{r_l} \rho_i f_y d r + \int_{r_u}^{r_l} \rho_i \sigma_s d r \]

(3.42)

\[F_{ul} = \rho_i f_y \left[(r_y - r_w) + r_y \ln \left(\frac{r_y}{r_w} \right) \right] \]

(3.43)

Analogamente ao item anterior:

\[F_{sr} = \rho_r f_y d r_w \Delta \phi \]

(3.44)

Neste caso \(D=0 \).
3.2.3 Condições de equilíbrio

As equações de equilíbrio são obtidas com base no modelo mecânico apresentado na Figura 3.2.

a) **Equilíbrio horizontal**

\[
F_{\alpha} \cos \alpha + F_{\omega} \Delta \varphi = F_{\omega} + F_{xw} \Delta \varphi
\]
(3.45)

b) **Equilíbrio vertical**

\[
P \frac{\Delta \varphi}{2 \pi} = \xi F_{\alpha} \sin \alpha + D
\]
(3.46)

onde:

\[
\xi = \left(\frac{500}{d} \right)^{1/3} \text{ com } d \text{ em } [\text{mm}]
\]
(3.47)

c) **Equilíbrio rotacional**

\[
P \frac{\Delta \varphi}{2 \pi} (r_{3} - r_{0}) = (F_{w} + F_{xw} \Delta \varphi) z + D(r_{w} - r_{0})
\]
(3.48)

onde:

\[
z = d - 0,45x
\]
(3.49)

3.2.4 Critério de ruptura

O critério de ruptura considera três situações críticas:

- uma compressão diametral do concreto quando a força radial de compressão alcança a inclinação de 20°;
- um esmagamento radial do concreto, quando a deformação radial média na face comprimida alcança o valor de 0,0035 em um comprimento plástico de 150 mm começando na face do pilar;
- um esmagamento tangencial do concreto, se a deformação tangencial da face comprimida alcança 0,0035 na distância da face do pilar igual à altura da linha neutra.
3.2.5 Método de cálculo

Com as equações de equilíbrio, para determinados valores da rotação ψ, as incógnitas $x/d, \alpha$ e P são determinadas por processo iterativo. Rotações crescentes são testadas até que se encontre a rotação última ψ_u, no momento em que as equações de equilíbrio e o critério de ruptura forem satisfeitos. Neste ponto a carga P encontrada representa a carga de ruptura da laje à punção.

3.2.6 Simplificação do modelo (SHEHATA, 1990)

Em 1990, Shehata formulou uma simplificação para seu modelo mecânico, mantendo os mesmos conceitos fundamentais, com o intuito de facilitar o seu uso.

As forças de pino da armadura longitudinal de flexão foram ignoradas porque, segundo o autor, para as taxas de armadura utilizadas na maioria dos casos práticos, o aço alcança o escoamento no momento da ruptura por punção, impedindo a atuação dessas forças.

As equações de equilíbrio vertical e horizontal no plano radial passaram a ser:

$$P\left(\frac{\Delta\phi}{2\pi}\right) = dF_{cr} \cdot \text{sen} 10^\circ \quad (3.50)$$

$$dF_{sr} = dF_{cr} \cdot \text{cos} 10^\circ \quad (3.51)$$

onde:

$$dF_{cr} = dA_c \cdot \sigma_b \quad (3.52)$$

$$dA_c = r_0 \cdot \Delta\phi \left(\frac{x}{\text{cos} 10^\circ}\right) \quad (3.53)$$

$$\sigma_b = \eta_f \cdot f_c \quad (3.54)$$

$$dF_{sr} = \rho \cdot r_w \cdot \Delta\phi \cdot d\sigma_{sr} \quad (3.55)$$

sendo:

- x → altura da linha neutra;
- r_0 → raio do pilar;
- r_w → raio onde ocorre a punção, definido pela extremidade superior da fissura de cisalhamento;
- d → altura útil da laje;
\(\eta_c\) → fator de concentração de tensões, que expressa a resistência do concreto sob um estado multiaxial de tensões;

\(\rho_r\) → taxa radial de armadura, igual à taxa de armadura de uma malha no caso da distribuição ortogonal das barras de aço.

A altura da linha neutra pode ser calculada por:

\[
\frac{x_0}{d} = 0.8 \sqrt{\frac{35n\rho_s}{f_c}}
\]

onde:

\(f_c\) → resistência à compressão do concreto, em [MPa]

\(\rho_s\) → taxa de armadura para a tensão de escoamento de 500 MPa

\[
\rho_s = \frac{f_y}{500} \leq 2\%
\]

\(n = \frac{E_s}{E_c}\)

O fator de concentração de tensões \(\eta_c\) teve a seguinte simplificação:

\[
\eta_c = 1.4 \sqrt{\frac{2d}{r_0}} \geq 1.25
\]

A taxa de armadura para a qual a armadura de flexão localizada no cone de punção \((r < r_w)\) escoa é dada por:

\[
\rho_r = 2.5n \left(\frac{r_o}{r_w} \right) \left(\frac{d}{r_w} \right) \left(\frac{f_c}{f_y} \right)^2
\]

onde:

\(r_w = r_o + (d - x)\cot 20^\circ\)

Finalmente, a carga última pode ser estimada por:

\[
P = 2\pi r_o \times \eta_c f_c \tan 10^\circ \sqrt{\frac{500}{d}}
\]

onde \(\sqrt{\frac{500}{d}}\) é um valor experimental para o efeito de forma (size effect).
3.3 Modelo de GOMES (1991)

Neste modelo em especial serão dadas algumas sugestões (em itálico) para a consideração da adição de fibras de aço ao concreto. Não se pretende formular um novo modelo baseado no de GOMES (1991), uma vez que seriam necessários alguns ensaios experimentais que não foram objetivo desta tese.

3.3.1 Hipóteses

i) Em estágios avançados de carregamento as fissuras de flexão e de cisalhamento dividem a laje em três partes:
 - pilar: limitado pela fissura circunferencial mais interna no topo da laje;
 - cunhas: limitadas pelas fissura circunferencial mais interna, pela fissura circunferencial de cisalhamento e pelas fissuras radiais de flexão;
 - segmentos de laje: limitados pela fissura circunferencial de cisalhamento, pelas fissuras radiais de flexão e pelo bordo da laje.

ii) Após a aplicação do carregamento na laje, as cunhas e os segmentos sofrem uma rotação de corpo rígido em torno do centro de rotação.

iii) Não se considera a ação de compressão de membrana por ser a favor da segurança, aumentando a carga última.

iv) Não se considera o efeito de pino da armadura positiva de flexão, devido às grandes rotações que ocorrem em lajes com armadura de punção. Isso faz com que os raios de escoamento da armadura de flexão sejam quase sempre maiores que os raios das fissuras de cisalhamento.
3.3.2 Apresentação do modelo

A Figura 3.6 apresenta as forças atuantes nos elementos, oriundas da rotação (ψ) da laje. As forças são as seguintes:

- **Força radial do concreto (F_{cr}):** atua no segmento de laje, abaixo da origem da fissura de cisalhamento, na seção próxima ao pilar. Representa a contribuição do concreto na resistência à punção.
- **Força tangencial do concreto (F_{ct}):** atua no segmento de laje, abaixo do centro de rotação, na direção tangencial. Resultante radial: $F_{ct}\Delta\psi$.
- **Força tangencial da armadura de flexão (F_{st}):** atua na armadura de flexão do segmento de laje, na direção tangencial. Resultante radial: $F_{st}\Delta\psi$.
- **Força radial da armadura de flexão (F_{sr}):** atua na armadura de flexão, na cunha, na direção radial.
- **Força da armadura de punção (F_{e}):** força transferida da cunha para o segmento, por meio da armadura de punção.
3.3.3 Determinação das forças

a) Força radial do concreto \((F_{cr}) \)

Esta força representa a capacidade total do tronco de pirâmide localizado na face do pilar, levando em consideração o efeito do gradiente radial de tensões. O gradiente de tensões que aparece no prismatóide faz com que sua tensão de ruptura seja maior do que a resistência à compressão de corpos-de-prova.

A partir das considerações geométricas obtêm-se as áreas A_a e A_b e tem-se que:

$$\xi = \frac{\sigma_a - \sigma_c}{f_c} = \frac{\sigma_a - \sigma_c}{x} \times \frac{f_c}{f_c} \times \left(1 - \frac{A_a}{A_b}\right) \quad (3.63)$$

onde:

$$k = 1 + \tan \alpha + \tan(25^\circ - \alpha) \quad (3.65)$$

$$k_1 = \frac{2}{\cos^2 \alpha} - k^2 \tan \alpha \quad (3.66)$$

Os ensaios de SHEHATA & SHEHATA (1989) demonstraram que a tensão σ_a pode ser determinada como função linear de ξ, obtendo-se:

$$\frac{\sigma_a}{f_c} = 1 + 0.9 \xi \quad (3.67)$$

Substituindo a Equação 3.64 na 3.67 obtém-se:
Modelos Mecânicos para Punção em Lajes

\[\sigma_a = \eta \cdot f_c \]

onde:

\[\eta \left(\alpha, r_o, \frac{x}{d}, \frac{r}{d} \right) = \frac{2 \frac{r_o}{d} k + \frac{x}{d} k_t}{\frac{r_o}{d} (1.8 + 0.2k) + \frac{x}{d} (0.1k + 0.9 \tan \alpha)} \]

A força radial no concreto (\(F_r \)), atuante na área \(A_c=A_{ec} \), pode então ser determinada pela Equação 3.70.

\[F_r = A_c \cdot \eta \cdot f_c \]

onde:

\[A_c = \frac{2\pi x}{\cos \alpha} (r_e - \frac{x \cdot \tan \alpha}{2}) \Delta \varphi \]

sendo:

\(x \rightarrow \) altura da linha neutra;
\(\alpha \rightarrow \) inclinação da força radial do concreto;
\(r_o \rightarrow \) raio do pilar.

Em lajes de concreto com fibras de aço, a tensão de ruptura do prismatóide \((\sigma_a) \) seria ainda maior, devido ao efeito de costura das fibras na superfície de deslizamento. Para a adaptação deste modelo à consideração das fibras, seriam necessários ensaios de prismatóides de concreto com fibras para a determinação de um novo valor de “\(\eta \)”, a exemplo do que foi feito por SHEHATA & SHEHATA (1989).

b) Força tangencial do concreto (\(F_{ct} \))

O autor adota o diagrama simplificado bilinear de tensão-deformação do concreto ilustrado na Figura 3.3.

A componente radial da força tangencial do concreto (\(F_{ct}\Delta \varphi \)) é determinada pela integração da área de um elemento circular de largura \(dr \) situado no raio \(r \).

\[F_{ct(r_e \rightarrow r)} \Delta \varphi = \Delta \varphi \int_{r_e}^{r_f} k_r f_c \cdot k_x \cdot x \cdot dr \]

onde:
k_c e k_x → funções da deformação tangencial na fibra extrema (ε_{ct});

k_c → razão entre a tensão máxima e f_c;

k_x → razão da tensão média no bloco até o valor máximo.

Na Figura 3.8 estão ilustrados os diagramas de deformação do aço e do concreto de uma faixa rígida da laje, e a variação do bloco de tensões tangenciais do concreto ao longo do raio.

Figura 3.8 – Diagramas de deformação do aço e do concreto (GOMES, 1991)
Modelos Mecânicos para Punção em Lajes

\[k_x = \begin{cases}
0.5 & \text{para } r_{es1} \leq r \leq r_3 \\
0.5 + 0.35 \left(\frac{\varepsilon_{ct} - \varepsilon_{cu}}{\varepsilon_{cu} - \varepsilon_{ct}} \right) & \leq 0.85 \text{ para } r_{es1} \leq r \leq r_{es1}
\end{cases} \quad (3.73) \]

\[k_c = \begin{cases}
0.85 \frac{\varepsilon_{ct}}{\varepsilon_{ct}} & \text{para } r_{es1} \leq r \leq r_3 \\
0.85 & \text{para } r \leq r_{es1}
\end{cases} \quad (3.74) \]

sendo:

\[\varepsilon_{ct} = \frac{\sqrt{f_c}}{5000} \text{ com } f_c \text{ em [MPa]} \quad (3.75) \]

\[\varepsilon_{cu} = 0.0035 \quad (3.76) \]

A deformação tangencial do concreto, determinada a partir da rotação do diagrama de corpo rígido, é diretamente proporcional à rotação da laje e à altura da linha neutra.

\[\varepsilon_{ct} = \frac{\Delta r_c}{r_c} = \frac{\psi}{\varepsilon_{ct}} x \quad (3.77) \]

Portanto, tem-se que:

\[r_{es1} = \psi \frac{x}{\varepsilon_{ct}} ; \quad r_{esu} = \psi \frac{x}{\varepsilon_{cu}} \quad (3.78) \]

Utilizando as Equações 3.72 a 3.78, a força tangencial do concreto pode ser determinada para seis intervalos de raios:

- **Caso 1**: \(r_0 \leq r_{esu} \leq r_{es1} \leq r_3 \)

\[F_{ct(r_0 \rightarrow r_3)} = 2\pi f_c x^2 \left[k_0 \psi \frac{0.723 r_c}{x} + \frac{0.425 \psi}{\varepsilon_{ct}} \ln \left(\frac{f_c \varepsilon_{ct}}{\psi x} \right) \right] \quad (3.79) \]

onde:

\[k_0 = 0.425 + \frac{0.298 \ln \alpha_0}{(\alpha_0 - 1)} \quad (3.80) \]
\[
\alpha_0 = \frac{\varepsilon_{cu}}{\varepsilon_{c1}}
\]
(3.81)

- **Caso 2:** \(r_{cu} \leq r_0 \leq r_{c1} \leq r_3 \)

\[
F_{cl(cu,r_{c1})} = 2\pi f_c \varepsilon^2 \left[0.425 - \frac{0.298}{\alpha_0 - 1} \left(\frac{\psi}{\varepsilon_{c1}} - \frac{r_0}{x} \right) + \frac{0.298}{\alpha_0 - 1} \ln \left(\frac{\psi x}{r_0 \varepsilon_{c1}} \right) - \frac{0.298}{\alpha_0 - 1} \ln \left(\frac{r_0 \varepsilon_{c1}}{\psi x} \right) \right]
\]
(3.82)

- **Caso 3:** \(r_{cu} \leq r_{c1} \leq r_0 \leq r_3 \)

\[
F_{cl(r_{c1},r_0)} = 2\pi f_c \varepsilon^2 \left[0.425 - \frac{\psi}{\varepsilon_{c1}} \ln \left(\frac{r_0}{r_3} \right) \right]
\]
(3.83)

- **Caso 4:** \(r_0 \leq r_{cu} \leq r_3 \leq r_{c1} \)

\[
F_{cl(r_{c1},r_{c1})} = 2\pi f_c \varepsilon^2 \left[1 + \frac{1}{\alpha_0 - 1} \left(\frac{0.298}{\varepsilon_{cu}} + \frac{0.425 r_0}{x} \right) - \frac{0.723}{x} \left(\frac{r_0}{\alpha_0 - 1} \right) + \frac{r_0}{\alpha_0 - 1} \ln \left(\frac{r_0 \varepsilon_{c1}}{\psi x} \right) \right]
\]
(3.84)

- **Caso 5:** \(r_{cu} \leq r_0 \leq r_3 \leq r_{c1} \)

\[
F_{cl(r_{c1},r_{c1})} = 2\pi f_c \varepsilon^2 \left[\left(\frac{r_3 - r_0}{x} \right) \left(\frac{0.425}{\alpha_0 - 1} - \frac{0.298}{\alpha_0 - 1} \right) + \frac{0.298}{\alpha_0 - 1} \ln \left(\frac{r_3}{r_0} \right) \right]
\]
(3.85)

- **Caso 6:** \(r_0 \leq r_3 \leq r_{cu} \leq r_{c1} \)

\[
F_{cl(r_{c1},r_0)} = 2\pi 0.723 f_c x(r_3 - r_0)
\]
(3.86)

No concreto reforçado com fibras de aço, talvez houvesse variação dos parâmetros que determinam \(F_{ct} \), como por exemplo a deformação tangencial do concreto (\(\varepsilon_{cu} \), \(\varepsilon_{c1} \) etc.).
c) **Força tangencial da armadura de flexão (F_{st})**

Adota-se para o aço o diagrama tensão-deformação supondo um material elastoplástico perfeito, ilustrado na Figura 3.9.

![Diagrama tensão-deformação do aço](image)

Figura 3.9 – Diagrama tensão-deformação do aço (GOMES, 1991)

A deformação tangencial da armadura de flexão é determinada pela rotação da laje como um corpo rígido.

\[
\varepsilon_{st} = \frac{\Delta r_s}{r_s} = \frac{\psi}{r_s} (d - x) \tag{3.87}
\]

Portanto, tem-se:

\[
r_{sy} = \psi \frac{(d - x)}{\varepsilon_{sy}} \tag{3.88}
\]

sendo:

\[
\varepsilon_{sy} = \frac{f_y}{200000} \tag{3.89}
\]

A componente radial da força tangencial da armadura de flexão (F_{st} \Delta \phi) é determinada pela integração da área de um elemento circular de largura \(dr\) situado no raio \(r\).

\[
dF_{st} = \sigma_s \cdot A_s = \rho \sigma_s d \cdot dr \tag{3.90}
\]
Modelos Mecânicos para Punção em Lajes

\[
F_{sl(r_o \rightarrow r_y)} \Delta \varphi = \left[\int_{r_o}^{r_y} \rho f_s d \varphi + \int_{r_y}^{r_y} \rho f_s \frac{r_y}{r} d r \right] \Delta \varphi \chi
\]
(3.91)

Para \(r_0 \leq r \leq r_3 \):

\[
F_{sl(r_o \rightarrow r_y)} = 2\pi \rho \chi \frac{f_y}{100} d \left[(r_y - r_0) + r_y \ln \left(\frac{r_3}{r_y} \right) \right]
\]
(3.92)

Para \(r_0 \leq r_3 \leq r_y \):

\[
F_{sl(r_o \rightarrow r_y)} = 2\pi \rho \chi \frac{f_y}{100} d(r_3 - r_0)
\]
(3.93)

onde \(\chi \) é um coeficiente relativo à diferença entre as forças radiais exercidas pela armadura ortogonal e aquelas exercidas pelas armaduras radial e circunferencial, resultando em uma mesma taxa de armadura de flexão. GOMES (1991) obtém este coeficiente a partir dos gráficos propostos por KINUNNEN (1963). AMORIM (2000) fez um estudo de linhas de tendência adequadas a esses gráficos e determinou a Equação 3.94.

\[
\chi = -0,0671 \left(\frac{r_y}{r_3} \right)^3 + 0,1669 \left(\frac{r_y}{r_3} \right)^2 + 0,0020 \left(\frac{r_y}{r_3} \right) + 0,829
\]
(3.94)

Em lajes de concreto com fibras de aço, seria interessante analisar a possibilidade de contribuição das fibras junto com a armadura de flexão tracionada.

d) Força radial da armadura de flexão (\(F_{sr} \))

A força radial atuante na armadura de flexão (\(F_{sr} \)) é determinada pela integração da área lateral de um cilindro de raio \(r_o \) e altura \(d \).

\[
dF_{sr} = \sigma_s \cdot A_s = \rho f_y d r_o \Delta \varphi
\]
(3.95)

\[
F_{sr(r_o \rightarrow r_y)} = 2\pi \rho \chi \frac{f_y}{100} d \cdot r_o
\]
(3.96)
e) Força da armadura de cisalhamento (\(F_e\))

A Figura 3.10 mostra o diagrama das forças atuantes nas armaduras de cisalhamento. Apenas as armaduras localizadas dentro da cunha são consideradas no cálculo.

![Diagrama das forças das armaduras de cisalhamento](image)

Figura 3.10 – Diagrama das forças das armaduras de cisalhamento (GOMES, 1991)

A componente vertical de \(F_e\) é obtida pelo somatório das forças verticais que cruzam a fissura de cisalhamento.

\[
F_e \cdot \text{sen} \beta = A_{s1} f_{et} + A_{s2} f_{e2} + \ldots + A_{sn} f_{en}
\]

onde:
- \(\beta\) → ângulo entre \(F_e\) e o plano horizontal;
- \(A_{sn}\) → área da seção transversal do \(n\)-ésimo elemento de combate ao cisalhamento;
- \(f_{en}\) → tensão atuante no \(n\)-ésimo elemento.

A componente horizontal é dada por:

\[
F_e \cdot \cos \beta = F_{et} \cdot \cos \beta_1 + F_{e2} \cdot \cos \beta_2 + \ldots + F_{en} \cdot \cos \beta_n
\]

onde:

\[
F_{en} = \frac{A_{sn} f_{en}}{\text{sen} \beta_n}
\]

Considerando \(\cot \beta_n = \frac{S_n}{(d - x)}\) tem-se que:
\[F_e \cos \beta = \frac{1}{(d - x)} \left(A_{s_1} f_{e_i} s_1 + A_{s_2} f_{e_2} s_2 + \ldots + A_{s_n} f_{e_n} s_n \right) \] \hspace{1cm} (3.100)

A partir da resolução do sistema formado pelas Equações 3.97 a 3.100, com três incógnitas \((F_e, \beta, x)\) e considerando \(x_1=0,33d\), obtém-se:

\[\beta = \arctg \left[\frac{0,67d \sum_{i=1}^{n} A_{s_i} f_{e_i}}{\sum_{i=1}^{n} A_{s_i} f_{e_i} s_i} \right] \] \hspace{1cm} (3.101)

\[F_e = \frac{\sum_{i=1}^{n} A_{s_i} f_{e_i}}{\sin \beta} \] \hspace{1cm} (3.102)

3.3.4 Equações de equilíbrio

As equações de equilíbrio são obtidas com base no modelo mecânico apresentado na Figura 3.6.

a) **Equilíbrio horizontal**

\[F_{sr(r-r_o)} + F_{sr(t_1-t_o)} = F_e \cos \beta + \xi F_o \cos \alpha + F_{cl(r_o-t_0)} \] \hspace{1cm} (3.103)

onde:

\[\xi = (400 / d)^{1/4} \quad \text{com} \ d \ \text{em [mm]} \] \hspace{1cm} (3.104)

b) **Equilíbrio vertical**

\[\xi F_o \sin \alpha + F_e \sin \beta = P \] \hspace{1cm} (3.105)

c) **Equilíbrio rotacional**

\[P(r_3 - r_o) = z(F_{sr(r-r_o)} + F_{sr(t_1-t_o)}) \] \hspace{1cm} (3.106)

onde:

\[z = d - 0,45x \] \hspace{1cm} (3.107)
Na Equação 3.106 o autor despreza a contribuição das forças F_{cr} e F_{ct} no equilíbrio de momentos, pois o braço de alavanca delas para o C.R. é muito pequeno.

Em um modelo para lajes de concreto com fibras de aço, as fibras atuariam “costurando” as fissuras, provavelmente como ilustrado na Figura 3.11. Nesses locais apareceriam forças de arrancamento das fibras (F_f) quando elas fossem solicitadas, próximo à ruína da ligação. As componentes verticais e horizontais dessas forças deveriam aparecer nas equações de equilíbrio.

3.3.5 Critérios de ruptura

a) Ruptura interna à região da armadura de cisalhamento

Segundo o modelo, a ruptura ocorre quando um mecanismo local é formado e o concreto se separa, formando uma superfície de deslizamento que atinge a zona comprimida.

A ruptura na região abaixo da fissura de cisalhamento e próximo ao pilar ocorre quando a tensão de cisalhamento em qualquer superfície atinge a resistência ao deslizamento.

$$ |t| = c - \mu \sigma $$ \hspace{1cm} (3.108)

onde:

$c = f_c / 4 \rightarrow$ coesão interna do concreto, segundo BRAESTRUP (1976); \hspace{1cm} (3.109)

$\mu = \tan \varphi = 0.75 \ (\varphi=37^\circ) \rightarrow$ coeficiente de atrito interno; \hspace{1cm} (3.110)

$\sigma \rightarrow$ tensão normal no plano de deslizamento.
O trabalho externo é obtido pelo produto da força pelo deslocamento, conforme a Figura 3.12.

\[W_e = \sigma \cdot b \cdot t \cdot \nu \cdot \text{sen}(\theta - \phi) \]

(3.111)

Figura 3.12 – Mecanismo de ruptura por deslizamento (GOMES, 1991)

O trabalho interno por unidade de comprimento pode ser obtido multiplicando-se o vetor de tensões pelo vetor de deformações, representados na Figura 3.13.

\[W_i^* = [\sigma \quad \tau] \cdot [\nu \cdot \text{sen} \phi \quad \nu \cdot \cos \phi] = \nu \cdot \cos \phi (\tau + \sigma \cdot \text{tg} \phi) = \nu \cdot c \cdot \cos \phi \]

(3.112)

Figura 3.13 – Critério de Coulomb modificado com vetores deslocamento (GOMES, 1991)
O trabalho interno total pode ser determinado pelo produto da Equação 3.112 pelo comprimento da superfície de ruptura:

\[W_i = \nu c \cos \phi \frac{\sin(90^\circ + \gamma) b t}{\sin(90^\circ - \theta - \lambda)} \]

(3.113)

Igualando o trabalho interno ao externo obtém-se:

\[\sigma = \frac{c \cos \phi \sin(90^\circ + \gamma)}{\sin(\theta - \phi) \sin(90^\circ - \theta - \gamma)} \]

(3.114)

Minimizando a Equação 3.114 em relação a \(\theta \) obtém-se a seguinte solução de limite superior:

\[\theta = \frac{\phi + 90^\circ - \gamma}{2} \]

(3.115)

\[\sigma_{\text{min}} = \frac{c \cos \phi \sin(90^\circ + \gamma)}{\sin^2 \left(\frac{90^\circ - \gamma - \phi}{2} \right)} \]

(3.116)

Substituindo valores para \(\gamma \) e \(c \) (Equações 3.109 e 3.110):

\[\sigma_{\text{min}} = k f_c \]

(3.117)

onde:

\[k = 0,2 \frac{\sin(90^\circ + \gamma)}{\sin^2 \left(\frac{53^\circ - \gamma}{2} \right)} \]

sendo \(\gamma = 25^\circ - \alpha \) para \(\alpha \leq 12,5^\circ \)

\[\gamma = \alpha \]

para \(\alpha \geq 12,5^\circ \)

(3.118)

Portanto, a ruptura do prismatóide ocorre quando a Equação 3.117 é satisfeita, por insuficiência de resistência ao deslizamento. O valor de \(k \) é então comparado com o valor de \(\eta \) (Equação 3.69), obtido da análise do gradiente longitudinal de tensões. Ocorrendo a igualdade, acontece a ruptura interna à região da armadura de cisalhamento da laje, ou seja, abaixo da fissura crítica e próxima ao pilar.

Conforme mencionado anteriormente, as fibras provavelmente atuariam no escorregamento (Figura 3.12), oferecendo resistência pelo efeito de “costura” na superfície de deslizamento. A partir de ensaios de prismatóides de concreto com
fibras, seria determinado um novo valor de “\(\eta \)”, e o critério de ruptura da região próxima ao pilar seria reformulado.

b) Ruptura externa à região da armadura de cisalhamento

Essa ruptura ocorre, segundo GOMES (1991), quando a tensão normal máxima na seção localizada a aproximadamente ‘1,35d’ da última camada de armadura de cisalhamento alcança a resistência à compressão diametral do concreto (\(f_{sp} \)). Nesse momento ocorre a formação da fissura crítica. O valor ‘1,35d’ foi obtido experimentalmente pelo autor, sendo ainda motivo de estudos.

A tensão normal máxima é expressa por:

\[
\sigma_{\text{max}} = \frac{1}{2} \sigma_x + \sqrt{\left(\frac{\sigma_x}{2} \right)^2 + \tau^2_{xy}} = f_{sp}
\]

(3.119)

onde:

\[
\sigma_x = \frac{H}{bh}
\]

(3.120)

\[
\tau_{xy} = \frac{3 P \Delta \phi}{2 bh}
\]

(3.121)

sendo:

\[
H = F_{at(l_t \to r_t) \Delta \phi} - F_{at(l_t \to r_t) \Delta \phi}
\]

(3.122)

\[
F_{at(l_t \to r_t) \Delta \phi} = F_{at(l_t \to r_t) \Delta \phi} - F_{at(l_t \to r_t) \Delta \phi}
\]

(3.123)

\[
F_{at(l_t \to r_t) \Delta \phi} = F_{at(l_t \to r_t) \Delta \phi} - F_{at(l_t \to r_t) \Delta \phi}
\]

(3.124)

No concreto reforçado com fibras de aço, o valor da resistência à tração por compressão diametral (\(f_{sp} \)), é maior do que no concreto sem fibras. Sendo assim, poder-se-ia utilizar, como critério de ruptura externa, um valor de \(f_{sp} \) que fosse função do volume de fibras de aço, a exemplo do que foi feito no Capítulo 6 (Equação 6.2).
3.3.6 Método de cálculo

O modelo de GOMES (1991) pode ser representado por um sistema de quatro equações e quatro incógnitas. As equações são as três de equilíbrio e a relativa ao critério de ruptura, e as incógnitas são: rotação (ψ), altura da linha neutra (x), ângulo de aplicação da força radial do concreto (α) e carga de ruptura (P). O procedimento para a solução desse sistema é iterativo e consiste de cinco etapas básicas:

a) Adoção de ψ, x, α

- Considera-se $\psi = 2/d$ com 'd' em [mm]
- Utiliza-se a sugestão de SHEHATA (1985) para lajes sem armadura de punção: $x = \frac{35n\sigma}{f_c}$ onde $n = \frac{E_i}{E_c}$ e $E_c = 4250\sqrt{f_c}$
- Adota-se α pequeno para começar.

b) Determinação de ‘x’ pelo Equilíbrio Horizontal

$$F_{sr(\psi)} + F_{sr(\alpha)} = F_e \cos \beta + \xi F_{\alpha} \cos \alpha + F_{cf(\eta)}$$

Os parâmetros adotados ψ, x, α devem ser ajustados até que a equação acima seja satisfeita.

c) Determinação de ‘α’ pelo Equilíbrio Vertical

$$\xi F_{c} \text{sen} \alpha + F_e \text{sen} \beta = P$$

O parâmetro α adotado no primeiro passo deve ser verificado.

d) Aplicação do critério de ruptura

- Superfície de ruptura na face do pilar: comparar η com k.
- Superfície de ruptura além da região armada: $\sigma_{\text{max}} = f_{sp}$

A condição que for alcançada primeiro indica P_u e o modo de ruptura.
3.4 Modelo de ALEXANDER & SIMMONDS (1991)

O Modelo Viga-Arco liga a transferência de força na ligação laje-pilar a gradientes de força na armadura de flexão próxima ao pilar. O termo “bond model” se justifica, uma vez que o gradiente de força na armadura está intimamente ligado à aderência entre a armadura e o concreto. O modelo combina características do “Truss Model” com o conceito de limitação da tensão de cisalhamento, e fornece estimativas de limite inferior da resistência à punção de ligações laje-pilar interno.

O Modelo Viga-Arco descreve a transferência da força cortante em uma ligação laje-pilar interno, em termos de dois mecanismos fundamentais de transferência de esforço cortante: ação de viga e ação de arco.
A laje é dividida em faixas radiais e quadrantes (Figura 3.15). Nos quadrantes, o esforço cortante é controlado pela ação de viga; dentro das faixas radiais, o esforço cortante é suportado por um arco comprimido, e varia de um valor máximo na face do pilar a um valor próximo de zero, na interseção do arco com a armadura de flexão da laje. Portanto, a força é transferida dos quadrantes adjacentes para uma faixa radial por meio de ação de viga, e da faixa para o pilar por meio de ação de arco.

Figura 3.15 – Transferência de esforço cortante em uma ligação laje-pilar interno (AFHAMI et al., 1998)

Em uma estrutura de concreto armado submetida à flexão, o momento interno resistente é calculado como sendo o produto da força de tração na armadura \(T \) pelo braço de alavanca efetivo \(jd \). O gradiente do momento fletor, o esforço cortante, varia ao longo do comprimento do elemento e é dado por:

\[
V = \frac{dT \cdot jd}{dx} = \frac{dT}{dx} \cdot jd + \frac{d(jd)}{dx} \cdot T
\]

(3.125)

onde \(j \) é um valor adimensional, menor do que 1, que faz reduzir o braço de alavanca de um valor igual a \(d \) para outro menor, igual a \(jd \).

O esforço cortante resultante de um gradiente de força de tração atuante na armadura longitudinal de tração, mantendo o braço do momento interno constante, é suportado pela ação de viga. O esforço cortante resultante de uma força de tração constante atuando na armadura longitudinal tracionada, com o braço de momento interno variável, é suportada pela ação de arco. Enquanto que a ação de viga em uma determinada seção transversal necessita de forças de aderência
nesta seção, a ação de arco necessita apenas de ancoragem adequada da armadura de flexão na extremidade da faixa radial. Portanto, nos casos de ruína por punção, a resistência de aderência da armadura de flexão é um fator significativo limitante da transferência de esforço cortante devida à ação de viga.

De acordo com o Modelo Viga-Arco, a deformação do concreto na direção circunferencial segue uma distribuição linear na espessura da laje, atingindo o valor máximo no encontro da laje com o pilar, na face comprimida. Isso inclusive pode ser confirmado nos ensaios de SHEHATA (1985). Uma vez que a deformação máxima do concreto na direção circunferencial se mantém na borda comprimida da laje, pode-se afirmar que o braço de alavanca do momento interno j_d é praticamente constante na direção circunferencial.

Conforme já foi dito, na filosofia do Modelo Viga-Arco quatro faixas radiais se estendem a partir do pilar, paralelamente às armaduras de flexão, como mostrado na Figura 3.16. As faixas radiais separam o pilar dos quadrantes da laje. As extremidades das faixas, opostas ao pilar, são colocadas em locais de tensão tangencial nula, de modo que as faixas radiais só possam absorver esforço cortante em suas laterais.

Figura 3.16 – Distribuição das faixas radiais (ALEXANDER & SIMMONDS, 1992)
Considera-se que o esforço cortante é transmitido para o pilar por meio de um arco radial comprimido, conforme mostra a Figura 3.17. A componente da força horizontal do arco é considerada constante; conseqüentemente, o esforço cortante suportado pelo arco varia de um valor máximo na face do pilar, onde a curvatura do arco é grande, até um valor mínimo na interseção do arco com a armadura de flexão, onde a curvatura é menor.

![Arco radial comprimido](ALEXANDER & SIMMONDS, 1992)

A força cortante suportada pela ação de arco na faixa radial, na face do pilar, deve ser dissipada na direção perpendicular à faixa, a uma determinada distância do pilar. Esse mecanismo de transferência da força cortante através das faces da faixa radial está de acordo com a consideração de um braço de alavanca de momento interno \(jd \) constante, perpendicular à faixa radial. A curvatura do arco é determinada pela sua interação com os quadrantes de laje adjacentes a ele. Consideram-se direções paralela e perpendicular à faixa radial a direção radial e circunferencial da laje em relação ao pilar, respectivamente.

De acordo com o *Modelo Viga-Arco*, a resistência à punção de uma ligação laje-pilar é limitada pelo momento resistente da faixa radial e pela capacidade da laje de gerar gradiente de força na armadura.

Considera-se que cada faixa radial pode ser representada por uma viga em balanço, de largura \(c \), com momentos fletores positivos (\(M_{pos} \)) e negativos (\(M_{neg} \)), como indicado na Figura 3.18.

\[
M_{neg} = T \cdot jd
\]
\(\text{(3.126)} \)

onde: \(T = f_y \cdot A_s \); \(\rho = \frac{A_s}{A_d} \); \(A_s = c \cdot d \)

Portanto:
\[M_{\text{neg}} = \rho_{\text{neg}} f_y j d^2 c \]

(3.127)

Da mesma forma:

\[M_{\text{pos}} = k_r \rho_{\text{pos}} f_y j d^2 c \]

(3.128)

sendo \(\rho_{\text{neg}} \) e \(\rho_{\text{pos}} \) as taxas de armadura de flexão da faixa radial, \(f_y \) a tensão de escoamento da armadura, \(d \) a altura útil da laje e \(j d \) o braço de alavanca do momento resistente da laje.

O termo \(k_r \) considera o grau de restrição da rotação na extremidade da faixa oposta ao pilar. Se a extremidade estiver completamente engastada, \(k_r = 1 \). Na maioria dos casos a extremidade da faixa é simplesmente apoiada, e então \(k_r = 0 \).

Para o cálculo das taxas de armadura (\(\rho_{\text{neg}} \) e \(\rho_{\text{pos}} \)) devem-se considerar as áreas das seções transversais de todas as barras localizadas dentro da faixa radial mais a metade da área da primeira barra localizada de cada lado da faixa radial.

Figura 3.18 – Equilíbrio de uma faixa radial (ALEXANDER & SIMMONDS, 1991)

O braço de alavanca do momento interno resistente (\(j \)) pode ser obtido com o auxílio do diagrama de tensões da Figura 3.19.
Modelos Mecânicos para Punção em Lajes

\[M_{ resisting} = T \cdot jd = C \cdot jd \] (3.129)

sendo:

\[T = A_s \cdot f_y = \rho \cdot A_c \cdot f_y = \rho \cdot c \cdot d \cdot f_y \] (3.130)

\[C = c \cdot y \cdot \sigma_c = 2(d - jd) \cdot 0.85 \cdot f_c \] (3.131)

Substituindo as Equações 3.130 e 3.131 na Equação 3.129 obtém-se a expressão para o cálculo do braço de alavanca.

\[j = 1 - \frac{\rho \cdot f_y}{17f_c} \] (3.132)

Cada face lateral da faixa radial é carregada por forças tangenciais provenientes dos quadrantes de laje. A carga uniformemente distribuída \(\omega \) é uma estimativa de limite inferior da força tangencial máxima que pode ser aplicada na faixa pelo quadrante de laje a ela adjacente. Como cada faixa radial de uma ligação laje-pilar interno possui duas faces, a força total uniformemente distribuída na faixa é \(2\omega \). O comprimento \(\ell \) é chamado de comprimento carregado da faixa radial.

Fazendo o equilíbrio rotacional e vertical das faixas radiais tem-se que:

\[M_s = \frac{2\omega \cdot \ell^2}{2} \] (3.133)

\[P_s = 2\omega \cdot \ell \] (3.134)

Isolando o parâmetro \(\ell \) da Equação 3.133:

\[\ell = \frac{\sqrt{M_s \cdot \omega}}{\omega} \] (3.135)

e substituindo na Equação 3.134, tem-se que:
\[P_s = 2 \sqrt{M_s \cdot \omega} \]
(3.136)

A resistência à punção da ligação laje-pilar é obtida somando a contribuição de cada faixa radial:

\[P = \sum P_s = 8 \sqrt{M_s \times \omega} \]
(3.137)

A Figura 3.20 mostra o diagrama de corpo-livre da metade de uma faixa radial (região sombreada na Figura 3.16). Esta parte da faixa suporta uma carga vertical atuando diretamente nela \((q)\), que inclui seu peso próprio, esforços cortantes e momentos fletores internos provocados pelos quadrantes de laje adjacentes à faixa. Na face externa da faixa, em contato com o quadrante de laje, atuam o esforço cortante \((\nu)\), o momento torçor \((m_t)\) e o momento fletor \((m_n)\). A combinação do esforço cortante com o momento torcor na face externa da faixa é representada pela teoria de Kirchhoff como sendo:

\[\nu = \frac{\partial m_n}{\partial r} + 2 \frac{\partial m_1}{\partial r} \]
(3.138)

O primeiro termo da Equação 3.138 é o gradiente de momento fletor na direção circunferencial, denominado esforço cortante principal. Ele é resultado da ação de viga e pode ser expresso em termos de gradiente de força na armadura de flexão perpendicular à faixa radial:

\[\frac{\partial m_n}{\partial n} = \frac{jd}{s} \times F_b' \]
(3.139)

onde \(F_b'\) é o gradiente de força em uma barra de aço perpendicular à faixa radial, \(s\) é o espaçamento entre dois pontos instrumentados da barra de aço e \(jd\) é o braço de alavanca do momento interno.

O segundo termo da Equação 3.138 é o gradiente de momento torcor na direção radial. Em uma ligação laje-pilar interno, o momento torcor é praticamente nulo no pilar e na extremidade da faixa, devido à simetria e às condições de contorno. Portanto, a contribuição total do esforço cortante devido ao gradiente do momento torcor é desprezada. Consequentemente, o carregamento da faixa \((2\omega)\) é função apenas do esforço cortante principal, podendo ser expresso por:

\[2\omega = 2 \left(\frac{\partial m_n}{\partial n} \right)_{\max} \]
(3.140)
Existem duas maneiras para se determinar o valor de ω. Uma delas é baseada no gradiente máximo de força atuante na armadura de flexão da laje perpendicular à faixa radial ($F_{b_{\text{max}}}$). O gradiente de força pode ser estimado medindo-se as deformações de alguns pontos das barras da armadura de flexão. Já que o gradiente de força na armadura de flexão depende fortemente da aderência entre ela e o concreto, deve-se determinar a resistência de aderência da armadura com base na resistência do concreto não confinado à tração por compressão diametral.

A segunda maneira de se determinar o valor de ω é fazer uma equivalência entre a máxima tensão de cisalhamento dada pela ação de viga e a resistência ao cisalhamento em uma única direção dada pelas normas de cálculo. A tensão de cisalhamento nominal fornecida pelas normas de cálculo para elementos lineares representa uma estimativa da contribuição do concreto na resistência ao cisalhamento desses elementos. É uma tentativa de se determinar a capacidade resistente de uma viga de desenvolver os requisitos de aderência médios necessários ao cisalhamento. Consequentemente, as equações normativas para determinação da resistência ao cisalhamento de vigas (uma única direção) podem ser diretamente aplicáveis às lajes (duas direções). O Modelo Viga-Arco (“bond model”) considera que ruptura por perda de aderência e ruptura por cisalhamento são sinônimas em sua essência.
De acordo com ALEXANDER & SIMMONDS (1991), a análise de 115 ensaios experimentais encontrados na literatura mostrou que a limitação de ω à resistência ao cisalhamento em uma direção, dada pelo ACI 318 (1999), fornece os melhores resultados para o *Modelo Viga-Arco*.

Os autores compararam o ACI 318 com a norma britânica BS 8110. Os resultados de carga última obtidos com o ACI 318 foram os mais conservativos, com uma média dos valores $P_{u(exp)}/P_{u(teo)}$ de 1,29. Entretanto, esses resultados apresentaram a menor dispersão, com um coeficiente de variação de 12,3%. Utilizando a BS 8110, a média dos valores $P_{u(exp)}/P_{u(teo)}$ foi de 1,05 e o coeficiente de variação 16,3%. No entanto, quando utilizadas taxas de armaduras altas, os resultados obtidos por meio do ω_{BRIT} tenderam a ser contra a segurança. A diferença entre a média dos valores $P_{u(exp)}/P_{u(teo)}$ fornecida pelo ACI 318 e pela BS 8110 pode ser ajustada pela simples multiplicação dos valores por uma constante. Sendo assim, o melhor procedimento para estimar a resistência à punção pelo *Modelo Viga-Arco*, segundo seus autores, é utilizando o ω_{ACI}.

Para aplicação do modelo não é preciso levar em conta o termo taxa de armadura de flexão no cálculo de ω. O momento resistente (M_s) das faixas radiais considera o efeito de variações da taxa de armadura (ρ), tanto positiva como negativa. Aumentando ρ, M_s aumenta e conseqüentemente o comprimento carregado (ℓ) das faixas radiais aumenta. Isto é equivalente a ter a resistência ao cisalhamento em função da taxa de armadura de flexão da laje, como é encontrado em algumas normas de cálculo.

No dimensionamento de uma viga de largura b e altura útil d, submetida ao esforço cortante V devido à ação de viga, é comum estimar sua resistência ao cisalhamento limitando-se a tensão tangencial a um valor máximo.

$$\frac{V}{b \cdot d} = j \times \tau_{\text{max}}$$ \hspace{1cm} (3.141)

Se limitada pela resistência de aderência, a tensão de cisalhamento proveniente da ação de viga pode ser representada como uma tensão crítica de cisalhamento. Desta forma, o *Modelo Viga-Arco* faz uso de uma tensão limite de cisalhamento, como assim o fazem as normas de cálculo, porém aplicada em uma seção crítica cruciforme (Figura 3.21), correspondente ao comprimento carregado ao longo das faixas radiais. O tamanho da seção crítica é função tanto da armadura de flexão da faixas radiais como da resistência da laje ao cisalhamento em uma...
única direção \(\ell = \sqrt{\frac{M_s}{f}} \). As normas consideram todas as seções críticas de altura constante ao redor do pilar, admitindo, assim, ação de viga na direção radial. Isso contraria os resultados experimentais, que indicam a ação de arco o principal mecanismo resistente na direção radial.

![Figura 3.21 – Seção crítica para o Modelo Viga-Arco (ALEXANDER & SIMMONDS, 1991)](image)

A ruína por punção é o resultado da capacidade limitada da laje de manter gradientes de força na armadura de flexão positiva localizada na vizinhança do pilar. Os gradientes de força na armadura podem ser limitados pela perda de aderência ou pela difusão do escoamento ao longo do comprimento da barra. Qualquer que seja a causa, a perda do gradiente de força nas barras localizadas nos quadrantes das lajes reduz sua capacidade de resistir ao cisalhamento na vizinhança com o pilar. A laje rompe por punção antes da formação do mecanismo de linhas de escoamento, devido à perda da aderência da armadura localizada nos quadrantes adjacentes da laje, perpendicularmente às faixas radiais.

O modelo é ainda capaz de explicar o fenômeno que acontece em lajes razoavelmente armadas, onde a ruína por punção ocorre de uma forma mais dúctil. Após a formação do mecanismo de linhas de escoamento, a resistência à flexão da laje aumenta devido à sua curvatura. O aumento dos deslocamentos é acompanhado pela propagação do escoamento ao longo do comprimento das barras que atravessam as linhas de escoamento. À medida que o trecho escoado da barra aumenta, seu potencial para gerar gradientes de força diminui e, consequentemente, a resistência da ligação laje-pilar ao cisalhamento diminui. A
punção ocorre quando a resistência ao cisalhamento diminui e se iguala a resistência à flexão, que aumentou (Figura 3.22).

Figura 3.22 – Modos de ruptura à punção: (a) dúctil; (b) frágil
(ALEXANDER & SIMMONDS, 1992)

Roteiro para aplicação do Modelo Viga-Arco

1) Calcula-se o momento resistente da faixa radial.

\[M_s = \rho f_y c d^2 \left(1 - \frac{\rho f_y}{17 f_c} \right) \quad [\text{kN.cm}] \quad (3.142) \]

2) Calcula-se a resistência ao cisalhamento das faixas radiais pela equação do ACI 318/99.

\[\tau = (0.167 \sqrt{f_c})/10 \quad [\text{kN/cm}^2] \quad (3.143) \]

3) Calcula-se o máximo esforço cortante distribuído linearmente, atuante em cada face lateral de uma faixa radial, que pode ser transmitido dos quadrantes adjacentes a ela (solução de limite inferior).

\[\omega = d \tau \quad [\text{kN/cm}] \quad (3.144) \]

4) Calcula-se a resistência à punção da ligação, que é a soma da resistência ao cisalhamento das quatro faixas radiais.

\[P_u = 8 \sqrt{M_s \omega} \quad [\text{kN}] \quad (3.145) \]
O *Modelo Viga-Arco* fornece uma solução de limite inferior para a resistência ao cisalhamento das faixas radiais. Essa solução pode ser o valor correto ou um muito baixo, ou seja, é sempre a favor da segurança. A resistência à punção da ligação laje-pilar é igual à soma das resistências ao cisalhamento de todas as faixas radiais. O *Modelo Viga-Arco* fornece uma solução de limite inferior para a resistência ao cisalhamento das faixas radiais porque o equilíbrio e as condições de contorno da faixa são satisfeitos e, tanto o momento resistente da faixa, como a resistência ao cisalhamento dos quadrantes de laje adjacentes que a carregam, não são excedidos em nenhuma seção.

Na Tabela 3.1 tem-se a aplicação do *Modelo Viga-Arco* para algumas lajes sem fibras, ensaiadas por autores citados na revisão bibliográfica do Capítulo 2.

Tabela 3.1 – Aplicação do Modelo Viga-Arco para lajes sem fibras

<table>
<thead>
<tr>
<th>Autor</th>
<th>f_c (MPa)</th>
<th>f_y (MPa)</th>
<th>ρ (%)</th>
<th>d (cm)</th>
<th>$P_{u\text{(exp)}}$ (kN)</th>
<th>$P_{u\text{(calc)}}$ (kN)</th>
<th>$P_{u\text{(exp)}}/P_{u\text{(calc)}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zambrana Vargas</td>
<td>26,00</td>
<td>602,00</td>
<td>1,73</td>
<td>4,0</td>
<td>80,00</td>
<td>52,69</td>
<td>1,52</td>
</tr>
<tr>
<td>Harajli</td>
<td>29,60</td>
<td>501,00</td>
<td>1,12</td>
<td>3,9</td>
<td>62,53</td>
<td>41,47</td>
<td>1,51</td>
</tr>
<tr>
<td>McHarg</td>
<td>30,00</td>
<td>434,00</td>
<td>0,87</td>
<td>12,5</td>
<td>306,0</td>
<td>299,9</td>
<td>1,02</td>
</tr>
<tr>
<td>Harajli</td>
<td>31,40</td>
<td>501,00</td>
<td>1,12</td>
<td>5,5</td>
<td>99,36</td>
<td>70,74</td>
<td>1,40</td>
</tr>
<tr>
<td>Alexander & Simmonds</td>
<td>35,60</td>
<td>438,00</td>
<td>0,46</td>
<td>10,5</td>
<td>264,0</td>
<td>169,5</td>
<td>1,56</td>
</tr>
<tr>
<td>Azevedo</td>
<td>43,73</td>
<td>609,88</td>
<td>1,57</td>
<td>8,0</td>
<td>176,4</td>
<td>155,4</td>
<td>1,14</td>
</tr>
<tr>
<td>Theodorakopoulos & Swamy</td>
<td>44,20</td>
<td>535,00</td>
<td>0,63</td>
<td>10,0</td>
<td>173,5</td>
<td>185,2</td>
<td>0,94</td>
</tr>
<tr>
<td>Swamy & Ali</td>
<td>45,00</td>
<td>462,00</td>
<td>0,63</td>
<td>10,0</td>
<td>197,7</td>
<td>173,5</td>
<td>1,14</td>
</tr>
<tr>
<td>Hughes & Xiao</td>
<td>52,00</td>
<td>558,00</td>
<td>1,00</td>
<td>5,2</td>
<td>89,00</td>
<td>86,48</td>
<td>1,03</td>
</tr>
<tr>
<td>Azevedo</td>
<td>86,65</td>
<td>609,88</td>
<td>1,57</td>
<td>8,0</td>
<td>190,7</td>
<td>191,0</td>
<td>1,00</td>
</tr>
<tr>
<td>Zambrana Vargas</td>
<td>88,70</td>
<td>602,00</td>
<td>1,73</td>
<td>4,0</td>
<td>88,70</td>
<td>79,03</td>
<td>1,12</td>
</tr>
</tbody>
</table>

Média 1,22
A média dos valores $P_{u(\text{exp})}/P_{u(\text{calc})}$ utilizando o $\omega_{\text{ACI(mod)}}$ foi de 1,22, próximo do valor encontrado por ALEXANDER & SIMMONDS (1991), que foi 1,29. O coeficiente de variação encontrado foi de 19,2%, enquanto que no artigo foi de 12,3%.
4 Programa Experimental

Neste capítulo serão descritos os ensaios-piloto, o planejamento dos demais ensaios e o estudo de dosagem do concreto neles utilizado.

Inicialmente foram feitos ensaios-piloto de vigas correspondentes a algumas lajes ensaiadas por AZEVEDO (1999), com o objetivo de se verificar se existiriam tendências similares entre os dois elementos estruturais. Nos Ensaios-piloto Série 1 foram testadas seis vigas, variando-se a porcentagem de fibras, nas quais o mecanismo de transferência da força cortante se deu predominantemente por ação de viga.

Sendo o modelo mecânico de ALEXANDER & SIMMONDS (1991), com o qual se pretendia trabalhar a inclusão das fibras, uma combinação da ação de viga com a ação de arco, achou-se necessário verificar se as fibras atuariam também na ação de arco. Para isto foram realizados os Ensaios-piloto Série 2, onde foram testadas seis vigas, variando-se a porcentagem de fibras, nas quais o mecanismo de transferência da força cortante se deu predominantemente por ação de arco.

4.1 Ensaios-piloto Série 1

Para a primeira série de ensaios-piloto optou-se por ensaiar vigas correspondentes a três lajes ensaiadas por AZEVEDO (1999), descritas na Tabela 4.1.
Para cada laje foram moldadas duas vigas de concreto, procurando-se obter traço semelhante ao das lajes, embora utilizando os materiais disponíveis na época. Na Tabela 4.2 apresenta-se o traço do concreto utilizado nos modelos.

Para cada laje foram moldadas duas vigas de concreto, procurando-se obter traço semelhante ao das lajes, embora utilizando os materiais disponíveis na época. Na Tabela 4.2 apresenta-se o traço do concreto utilizado nos modelos.

Tabela 4.2 – Traço do concreto das Vigas Piloto Série 1

<table>
<thead>
<tr>
<th>Traço 1:1,8:2,5:0,5</th>
<th>Materiais</th>
<th>Consumo (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lajes</td>
<td>Vigas</td>
<td></td>
</tr>
<tr>
<td>Cimento</td>
<td>Cimento</td>
<td></td>
</tr>
<tr>
<td>CP II F-32</td>
<td>CP II E-32</td>
<td>423,15</td>
</tr>
<tr>
<td>Itaú</td>
<td>Ribeirão</td>
<td></td>
</tr>
<tr>
<td>Areia</td>
<td>Areia</td>
<td>760,56</td>
</tr>
<tr>
<td>Brita 1</td>
<td>Brita 1</td>
<td>1056,30</td>
</tr>
<tr>
<td>Água</td>
<td>Água</td>
<td>211,30</td>
</tr>
<tr>
<td>Fibra</td>
<td>Fibra</td>
<td></td>
</tr>
<tr>
<td>RC 65/30 BN</td>
<td>ZP-305</td>
<td>0</td>
</tr>
<tr>
<td>$\ell = 30$ mm</td>
<td>$\ell = 30$ mm</td>
<td>59,85</td>
</tr>
<tr>
<td>$D = 0,45$ mm</td>
<td>$D = 0,55$ mm</td>
<td>119,70</td>
</tr>
<tr>
<td>$\ell / D = 66,7$</td>
<td>$\ell / D = 54,5$</td>
<td></td>
</tr>
</tbody>
</table>

Na Tabela 4.3 apresentam-se as características das armaduras de flexão. As barras de aço foram ensaiadas segundo a ABNT (NBR 6152/1992).

Tabela 4.3 – Características da armadura de flexão das Vigas Piloto Série 1

<table>
<thead>
<tr>
<th>ϕ 10 mm</th>
<th>f_y (MPa)</th>
<th>f_u (MPa)</th>
<th>E (MPa)</th>
<th>ε_y (mm/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lajes</td>
<td>609,88</td>
<td>710,47</td>
<td>194060</td>
<td></td>
</tr>
<tr>
<td>Vigas</td>
<td>611</td>
<td>726</td>
<td>205000</td>
<td>3,4</td>
</tr>
</tbody>
</table>

(*) Valor não fornecido pela autora desses ensaios (AZEVEDO, 1999)

Tabela 4.4 – Resultados dos ensaios de caracterização dos concretos utilizados nas Vigas Piloto Série 1

<table>
<thead>
<tr>
<th>Modelo</th>
<th>f_{c14} (MPa)</th>
<th>$f_{t,sp14}$ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP1A,VP1B</td>
<td>36,08</td>
<td>3,42</td>
</tr>
<tr>
<td>VP2A,VP2B</td>
<td>37,41</td>
<td>4,98</td>
</tr>
<tr>
<td>VP3A,VP3B</td>
<td>35,91</td>
<td>5,16</td>
</tr>
</tbody>
</table>

Na Tabela 4.5 apresentam-se as previsões das cargas de ruína ao cisalhamento e à flexão das vigas, de acordo com a ABNT (NBR 6118/2001), considerando uma resistência do concreto à compressão média de 35 MPa. As fibras não foram consideradas nos cálculos.

Tabela 4.5 – Previsão da carga de ruína das Vigas Piloto Série 1

<table>
<thead>
<tr>
<th>F_{cis} (kN)</th>
<th>F_{fle} (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25,89</td>
<td>42,46</td>
</tr>
</tbody>
</table>

As vigas foram ensaiadas à flexão e dimensionadas para romperem por cisalhamento. Na Figura 4.1 tem-se o esquema de ensaio das vigas, e o detalhamento de suas armaduras. A unidade das dimensões da viga é centímetro.
Na Figura 4.2 tem-se uma fotografia do esquema de ensaio das lajes de AZEVEDO (1999).

Os ensaios das vigas, assim como os das lajes, foram feitos com deformação controlada, e velocidade igual a 0,005 mm/s. Manteve-se a mesma espessura, altura útil, e taxa de armadura das lajes, e as mesmas dimensões do pilar utilizado nos ensaios das ligações. Para a definição do vão utilizou-se como referência o ângulo (θ) da superfície de ruína com o plano médio das lajes, fixando \(a/d = 3.9 \). Utilizou-se praticamente o mesmo traço de AZEVEDO (1999), substituindo os materiais por outros semelhantes disponíveis na época. Esse fato
pode explicar a pequena diferença de resistência entre o concreto das lajes e o das vigas.

Na Tabela 4.6 apresentam-se alguns dados e resultados dos ensaios das Vigas Piloto Série 1.

<table>
<thead>
<tr>
<th>Viga</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>b (cm)</th>
<th>ρ (%)</th>
<th>Vf (%)</th>
<th>Fr (kN)</th>
<th>Fr (teo) (kN)</th>
<th>Fu (kN)</th>
<th>θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP1A</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>1,67</td>
<td>0</td>
<td>9,2</td>
<td>8,38</td>
<td>8,38</td>
<td>37,1</td>
</tr>
<tr>
<td>VP1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,0</td>
<td>28,42</td>
<td>27,01</td>
<td></td>
</tr>
<tr>
<td>VP2A</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>1,67</td>
<td>0,75</td>
<td>13,5</td>
<td>12,20</td>
<td>12,20</td>
<td>33,7</td>
</tr>
<tr>
<td>VP2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13,5</td>
<td>35,39*</td>
<td>35,39*</td>
<td></td>
</tr>
<tr>
<td>VP3A</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>1,67</td>
<td>1,50</td>
<td>17,0</td>
<td>12,64</td>
<td>12,64</td>
<td>31,6</td>
</tr>
<tr>
<td>VP3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28,0</td>
<td>48,54</td>
<td>48,54</td>
<td></td>
</tr>
</tbody>
</table>

* Ensaio realizado com o dobro da velocidade dos outros
Fr: carga correspondente à 1a fissura de flexão (retirada do gráfico F x u)
Fr (teo): Carga correspondente à 1a fissura de flexão (calculada segundo o ACI 318 (1999))

Na Figura 4.3 apresenta-se a instrumentação das vigas, e na Figura 4.4 o gráfico da força aplicada versus a deformação do ponto central das armaduras de flexão, mostrando que elas não atingiram o escoamento.
Figura 4.4 – Gráfico Força x Deformação da armadura das Vigas Piloto Série 1

Na Figura 4.5 apresenta-se o gráfico da força aplicada versus o deslocamento do ponto central, de onde se verifica o ganho de resistência e ductilidade proporcionado pela adição das fibras de aço ao concreto.

Figura 4.5 – Gráfico Força x Deslocamento das Vigas Piloto Série 1
De acordo com o esperado, para a relação \(a/d \) utilizada, a ruína das vigas foi por tração diagonal, sendo que uma das fissuras se propagou ao longo da alma da viga até ela se tornar instável devido ao aumento do carregamento e acontecer a ruína.

O ângulo que a fissura crítica faz com a horizontal foi maior para os modelos VP1 e menor para os VP3.

Na Figura 4.6 apresenta-se a configuração de ruína das vigas. Onde está escrito V1A entenda-se VP1A, e assim por diante. Nas vigas VP3 apareceram fissuras de flexão, que se devem à presença das fibras em quantidade elevada (1,5%). As armaduras dessas vigas foram mais solicitadas, quase atingindo o escoamento; entretanto a ruína permaneceu caracterizada por cisalhamento, havendo a formação da fissura crítica inclinada. Nos modelos sem fibras a fissura diagonal formou-se em apenas um dos lados da viga, enquanto que em alguns modelos com fibras, principalmente os com 1,5%, houve a formação de fissura diagonal nos dois lados da viga.

Figura 4.6 – Configuração de ruína das Vigas Piloto Série 1
Na Tabela 4.7 observa-se a atuação das fibras nos compósitos dos Ensaios-piloto Série 1.

Tabela 4.7 – Atuação das fibras nos compósitos dos Ensaios-piloto Série 1

<table>
<thead>
<tr>
<th>Vigas</th>
<th>VP1</th>
<th>VP2</th>
<th>VP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vf (%)</td>
<td>0</td>
<td>0,75</td>
<td>1,5</td>
</tr>
<tr>
<td>Fu (kN)</td>
<td>28,42</td>
<td>40,44</td>
<td>43,02</td>
</tr>
<tr>
<td>27,01</td>
<td>35,39**</td>
<td>48,54</td>
<td></td>
</tr>
<tr>
<td>ℓf (mm)</td>
<td>--</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>ℓc* (mm)</td>
<td>--</td>
<td>30</td>
<td>54</td>
</tr>
<tr>
<td>Tipo de ruptura</td>
<td>--</td>
<td>arrancamento das fibras</td>
<td>arrancamento das fibras</td>
</tr>
<tr>
<td>Vf(crit) (%)</td>
<td>--</td>
<td>1,1</td>
<td>1,9</td>
</tr>
</tbody>
</table>

* Aplicação do modelo para fibras retas
** * Ensaios realizados com o dobro da velocidade dos outros

As equações utilizadas para a determinação do comprimento crítico (Equação 2.1) e do volume crítico (Equação 2.2b) dependem da resistência média de aderência na interface fibra-matriz (τ_{fu}). Na falta de ensaios de arrancamento das fibras, optou-se por utilizar a Equação 2.3 para determinação de τ_{fu}. Entretanto, essa equação é função do volume de fibras, tornando o comprimento crítico e o volume crítico também dependentes do volume de fibras, o que causa certa estranheza nos resultados apresentados na Tabela 4.7.

Na Tabela 4.8 encontra-se a estimativa da carga de ruína das vigas com fibras (V_{fib}), com base no modelo de SWAMY et al. (1993), estudado no item 2.2 do Capítulo 2. Para a estimativa da parcela de esforço cortante proveniente da contribuição do concreto (V_c) foi utilizada a equação da ABTN (NBR 6118/2001).

Tabela 4.8 – Aplicação do modelo teórico às Vigas Piloto Série 1

<table>
<thead>
<tr>
<th>Viga</th>
<th>Vf (%)</th>
<th>τ_{fu} (MPa)</th>
<th>σ_{cu} (MPa)</th>
<th>V_{fib} (kN)</th>
<th>V_c (kN)</th>
<th>V_u (kN)</th>
<th>$V_u - V_c$ (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP1A</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>13,21</td>
<td>14,21</td>
<td>13,51</td>
<td>≈ 0</td>
</tr>
<tr>
<td>VP1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP2A</td>
<td>0,75</td>
<td>10,39</td>
<td>1,74</td>
<td>15,04</td>
<td>20,22</td>
<td>17,70*</td>
<td>6,69</td>
</tr>
<tr>
<td>VP2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP3A</td>
<td>1,50</td>
<td>5,87</td>
<td>1,97</td>
<td>16,99</td>
<td>21,51</td>
<td>24,27</td>
<td>8,34</td>
</tr>
<tr>
<td>VP3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* * Ensaios realizados com o dobro da velocidade dos outros
Comparando o valor de V_c com os de V_u das vigas sem fibras, observa-se que a ABTN (NBR 6118/2001) fornece uma excelente previsão da carga de ruína ao cislhamento de vigas sem fibras. A partir desta conclusão, obtém-se, na última coluna, a parcela do esforço cortante obtido experimentalmente, proveniente da contribuição das fibras. Comparando esse valor, com o obtido pelo modelo teórico de SWAMY et al. (1993), verifica-se que esse modelo não forneceu resultados satisfatórios aos ensaios das Vigas Piloto Série 1, prevendo mais do que o obtido nos ensaios experimentais.

A quantificação do ganho de resistência tanto para as vigas, como para as lajes, pode ser encontrada na Tabela 4.9, ou no gráfico da Figura 4.7.

<table>
<thead>
<tr>
<th>V_f (%)</th>
<th>Lajes</th>
<th>Vigas</th>
<th>Correlação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pu (kN)</td>
<td>ΔPu (%)</td>
<td>Fu(med) (kN)</td>
</tr>
<tr>
<td>0</td>
<td>176,48</td>
<td>--</td>
<td>27,72</td>
</tr>
<tr>
<td>0,75</td>
<td>191,96</td>
<td>8,8</td>
<td>40,44</td>
</tr>
<tr>
<td>1,50</td>
<td>197,61</td>
<td>12,0</td>
<td>45,78</td>
</tr>
</tbody>
</table>

Figura 4.7 – Gráfico Resistência média x Volume de fibras para Lajes e Vigas Piloto Série 1
Plotando em um gráfico (Figura 4.8) a resistência média das vigas versus a resistência das lajes, verifica-se que a linha de tendência é do tipo linear, e o coeficiente de correlação é bem próximo da unidade.

\[y = 1,1785x + 143,92 \]

\[R^2 = 0,9991 \]

Figura 4.8 – Gráfico Resistência das Lajes x Resistência média das Vigas Piloto Série 1

Nos Ensaios-piloto Série 1 foram ensaiadas seis vigas, variando-se a porcentagem de fibras, nos quais o mecanismo de transferência de força cortante se deu predominantemente por ação de viga. Pelos resultados verificou-se que as fibras realmente contribuíram no aumento de resistência ao cisalhamento, ou seja, elas atuaram na ação de viga, constituiando-se uma parcela desse mecanismo alternativo resistente ao cisalhamento, proveniente da contribuição do concreto.

Seria interessante verificar se as fibras atuam também na ação de arco. Para isto foram realizados os Ensaios-piloto Série 2 de vigas.

4.2 Ensaios-piloto Série 2

Para a segunda série de ensaios-piloto, optou-se por ensaiar vigas curtas correspondentes às mesmas três lajes ensaiadas por AZEVEDO (1999), já descritas na Tabela 4.1.

Na Tabela 4.10 apresenta-se o traço do concreto e na Tabela 4.11 as características da armadura de flexão utilizada nas vigas.
Tabela 4.10 – Traço do concreto das Vigas Piloto Série 2

<table>
<thead>
<tr>
<th>Traço 1:1,8:2,5:0,5</th>
<th>Materiais</th>
<th>Consumo (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lajes</td>
<td>Vigas</td>
<td></td>
</tr>
<tr>
<td>Cimento</td>
<td>Cimento</td>
<td></td>
</tr>
<tr>
<td>CP II F-32</td>
<td>CP II F-32</td>
<td>423,15</td>
</tr>
<tr>
<td>Itaú</td>
<td>Itaú</td>
<td></td>
</tr>
<tr>
<td>Areia</td>
<td>Areia</td>
<td>760,56</td>
</tr>
<tr>
<td>Brita 1</td>
<td>Brita 1</td>
<td>1056,30</td>
</tr>
<tr>
<td>Água</td>
<td>Água</td>
<td>211,30</td>
</tr>
<tr>
<td>Fibra</td>
<td>Fibra</td>
<td></td>
</tr>
<tr>
<td>RC 65/30 BN</td>
<td>ZP-305</td>
<td></td>
</tr>
<tr>
<td>$\ell = 30 \text{ mm}$</td>
<td>$\ell = 30 \text{ mm}$</td>
<td>0</td>
</tr>
<tr>
<td>$D = 0,45 \text{ mm}$</td>
<td>$D = 0,55 \text{ mm}$</td>
<td>59,85</td>
</tr>
<tr>
<td>$\ell / D \approx 66,7$</td>
<td>$\ell / D = 54,5$</td>
<td>119,70</td>
</tr>
<tr>
<td>$f_y = 1150 \text{ MPa}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 4.11 – Características das armaduras de flexão das Vigas Piloto Série 2

<table>
<thead>
<tr>
<th>Bitola</th>
<th>f_y (MPa)</th>
<th>f_u (MPa)</th>
<th>E (MPa)</th>
<th>ε_y (mm/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lajes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 mm</td>
<td>679,91</td>
<td>725,75</td>
<td>202320</td>
<td></td>
</tr>
<tr>
<td>10 mm</td>
<td>609,88</td>
<td>710,47</td>
<td>194060</td>
<td>--</td>
</tr>
<tr>
<td>Vigas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 mm</td>
<td>698,80</td>
<td>757,42</td>
<td>205760</td>
<td>5,396</td>
</tr>
<tr>
<td>10 mm</td>
<td>548,63</td>
<td>691,09</td>
<td>205000</td>
<td>2,676</td>
</tr>
</tbody>
</table>

Na Tabela 4.12 estão mostrados os resultados dos ensaios de caracterização do concreto utilizado nas Vigas Piloto Série 2.

Tabela 4.12 – Resultados dos ensaios de caracterização dos concretos utilizados nas Vigas Piloto Série 2

<table>
<thead>
<tr>
<th>Modelo</th>
<th>f_{c14} (MPa)</th>
<th>$f_{t,sp14}$ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP4A,VP4B</td>
<td>35,35</td>
<td>2,68</td>
</tr>
<tr>
<td>VP5A,VP5B</td>
<td>38,67</td>
<td>4,04</td>
</tr>
<tr>
<td>VP6A,VP6B</td>
<td>42,25</td>
<td>4,91</td>
</tr>
</tbody>
</table>
As vigas foram ensaiadas à flexão e dimensionadas para romperem por cisalhamento. Na Figura 4.9 tem-se o esquema de ensaio das vigas, e o detalhamento de suas armaduras.

![Diagrama de ensaio e armaduras das Vigas Piloto Série 2](image)

Figura 4.9 – Esquema de ensaio e armaduras das Vigas Piloto Série 2

Os ensaios das vigas, assim como os das lajes, foram feitos com deformação controlada, e velocidade igual a 0,005 mm/s. Procurou-se manter a mesma espessura, altura útil, e taxa de armadura das lajes, e as mesmas dimensões do pilar utilizado nos ensaios das ligações. Para a definição do vão procurou-se manter a relação a/d menor do que um valor entre 2,0 a 3,0, conforme orientado no Capítulo 2, fixando $a/d = 2,4$. Utilizou-se praticamente o mesmo traço de AZEVEDO (1999), substituindo os materiais por outros semelhantes disponíveis na época. Esse fato pode explicar a pequena diferença de resistência entre o concreto das lajes e o das vigas.

Para a estimativa da força correspondente à resistência à flexão, foi utilizada a ABNT (NBR 6118/2001) e, considerando uma resistência do concreto média de 40 MPa, o valor encontrado foi de 65 kN.

Na Tabela 4.13 apresentam-se alguns dados e resultados dos ensaios das Vigas Piloto Série 2. Verifica-se que não houve aumento da resistência à fissuração nem da resistência última das vigas, devido à adição das fibras de aço, como ocorreu na Série 1.
Tabela 4.13 – Dados e resultados das Vigas Piloto Série 2

<table>
<thead>
<tr>
<th>Viga</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>b (cm)</th>
<th>ρ (%)</th>
<th>Vr (%)</th>
<th>Vf(crit) (%)</th>
<th>Fr (kN)</th>
<th>Fu (kN)</th>
<th>Fu(teo) (kN)</th>
<th>θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP4A</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>0</td>
<td>--</td>
<td>18,0</td>
<td>49,98</td>
<td>58,55</td>
<td>30,2</td>
</tr>
<tr>
<td>VP4B</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>0,75</td>
<td>0,98</td>
<td>24,0</td>
<td>24,0</td>
<td>23,0</td>
<td>26,6</td>
</tr>
<tr>
<td>VP5A</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>1,50</td>
<td>1,19</td>
<td>23,5</td>
<td>56,62</td>
<td>56,74</td>
<td>28,1</td>
</tr>
<tr>
<td>VP5B</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>1,50</td>
<td>1,19</td>
<td>24,0</td>
<td>56,74</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

F_u(teo): valor obtido segundo o Modelo de Bielas e Tirantes (DUMET, 1995)

Na Figura 4.10 apresenta-se a instrumentação das vigas, e na Figura 4.11 o gráfico da força aplicada versus a deformação do ponto central das armaduras de flexão positivas, mostrando que elas não atingiram o escoamento.
Figura 4.11 – Gráfico Força x Deformação da armadura das Vigas Piloto Série 2

Na Figura 4.12 apresenta-se o gráfico da força aplicada versus o deslocamento do ponto central, de onde se observa que praticamente não houve ganho de resistência nem de ductilidade devido à adição das fibras de aço ao concreto.

Figura 4.12 – Gráfico Força x Deslocamento das Vigas Piloto Série 2
De acordo com o esperado, para a relação a/d utilizada, a ruína das vigas foi por cisalhamento. Uma fissura secundária que se iniciou na fissura inclinada se propagou ao longo da armadura longitudinal, devido, possivelmente, à ação de pino dessa armadura. Essa fissura causou perda de aderência, fazendo com que a armadura escorregasse. Houve fendilhamento do concreto abaixo da armadura longitudinal, devido à penetração das fissuras diagonais nessa região.

Na Figura 4.13 apresenta-se a configuração de ruína das vigas curtas, onde é possível observar o caminhamento da fissura crítica do ponto de aplicação da força até o apoio. Onde está escrito V4A entenda-se VP4A, e assim por diante.

Nas vigas com fibras apareceram mais fissuras de flexão do que nas vigas sem fibras. Nas vigas VP6A e VP6B apareceram muitas fissuras diagonais ao invés de uma única, e com aberturas menores do que as das outras vigas. Isso vem a confirmar a influência das fibras no controle da abertura de fissuras. Nessas vigas, em que o volume de fibras adicionado foi superior ao crítico, houve fissuração múltipla da matriz. Nas vigas sem fibras (VP4) houve lascamento do concreto próximo à armadura longitudinal durante o descarregamento, enquanto as fibras tornaram a ruína das outras vigas (VP5 e VP5) mais dúctil, preservando a integridade do concreto.
No gráfico da Figura 4.14 foram plotados os valores de resistência ao cisalhamento de todas as vigas dos ensaios-piloto e de resistência à punção das lajes de referência. A similaridade de comportamento existente entre as lajes e as vigas da Série 1 não se manifestou entre as lajes e as vigas de Série 2.
Figura 4.14 – Gráfico Resistência média x Volume de fibras para Lajes e Vigas Piloto Série 2

Plotando em um gráfico (Figura 4.15) a resistência média das vigas versus a resistência das lajes, verifica-se que só houve correlação entre os resultados das lajes e das vigas da Série 1, onde predominou ação de viga. Isso vem a confirmar que as fibras não contribuem no aumento de resistência ao cisalhamento quando predomina a ação de arco.

Figura 4.15 – Gráfico Resistência das Lajes x Resistência média das Vigas Piloto Série 2

y = 1,1629x + 143,79
R² = 0,9977
4.3 Planejamento dos ensaios

A parte experimental foi constituída por ensaios de caracterização dos materiais, ensaios de cisalhamento na flexão em vigas prismáticas, e ensaios de punção em modelos de ligação laje-pilar em escala reduzida.

4.3.1 Descrição dos modelos de ligação laje-pilar e procedimentos de ensaio

Os modelos de lajes eram quadrados de lados de 116 cm e possuíam espessura de 10 cm. Na Figura 4.16 e na Figura 4.17 encontram-se os detalhamentos das armaduras dos modelos de lajes.

![Figura 4.16 – Detalhamento das armaduras dos modelos de laje](image)

Os modelos foram moldados na posição invertida, para facilitar o posicionamento da armadura de flexão, garantindo-se o cobrimento definido no projeto.
Figura 4.17 – Detalhamento das armaduras dos modelos de laje na posição da concretagem

Na Figura 4.18 encontra-se o esquema do sistema de ensaio dos modelos de ligação laje-pilar.
Figura 4.18 – Sistema de ensaio dos modelos de ligação laje-pilar

O sistema de ensaio das vigas, o detalhamento de sua armadura e a instrumentação utilizada são apresentados oportunamente, devido à variedade de dimensões das vigas utilizadas na pesquisa.

Foi feito um modelo de laje para cada conjunto de variáveis estudado, e duas vigas equivalentes a cada modelo de laje.

Foram moldados nove corpos-de-prova cilíndricos para cada concreto, para determinação da resistência à compressão, à tração por compressão diametral e do módulo de elasticidade. Além disso, foram moldados mais três corpos-de-prova prismáticos para determinação da resistência à tração na flexão e da tenacidade no caso dos compósitos. Os modelos e os corpos-de-prova foram adensados em mesa vibratória, curados e ensaiados 14 dias após a concretagem.

Conforme já havia sido dito, os ensaios foram feitos com deformação controlada, com a velocidade de deslocamento do pistão de 0,005 mm/s. O pilar foi simulado por uma chapa de aço de dimensões em planta de 8 x 8 cm, conforme procedimento utilizado por AZEVEDO (1999).

Na Figura 4.19 tem-se o esquema de instrumentação dos modelos de ligação laje-pilar.
Figura 4.19 – Esquema de instrumentação dos modelos de ligação laje-pilar
4.3.2 **Variáveis dos ensaios**

Inicialmente foram feitos ensaios-piloto de vigas correspondentes a algumas lajes ensaiadas por AZEVEDO (1999), cujas características foram descritas na Tabela 4.1.

Uma vez detectadas tendências similares entre as vigas e as lajes, foram programadas as séries de ensaios detalhadas na Tabela 4.15, variando alguns parâmetros em relação aos utilizados nos ensaios-piloto, os quais foram considerados como parâmetros de referência.

Nas séries S1 e S2 procurou-se observar se as correlações entre laje e viga, detectadas nos ensaios-piloto, são válidas alterando-se o volume de fibras e a resistência do concreto à compressão. Na série S3 tentou-se correlacionar vigas de altura maior com as vigas ou lajes da série S2.

Na série S4 pretendeu-se verificar se a mudança da relação de aspecto e, principalmente, do comprimento da fibra, altera a correlação entre laje e viga, detectada nos ensaios-piloto. Para esse estudo foram utilizados os resultados da laje OSC.S1 de AZEVEDO (1999). Quanto à fibra longa, optou-se pela fibra RL 45/50 BN, já que o seu comprimento não excede 1/3 da menor dimensão do corpo-de-prova cilíndrico 15x30 (ABNT NBR 5738/1994).

Por fim, considerando as hipóteses levantadas nas séries S3 e S4, pretendeu-se utilizar essas conclusões moldando-se vigas para serem correlacionadas com as lajes ensaiadas por ZAMBRANA VARGAS (1997), cujas características estão na Tabela 4.14. Nessas vigas foi utilizada a mesma taxa de armadura da laje, porém foram mudadas a altura útil e a dimensão da chapa de aplicação do carregamento.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>c (cm)</th>
<th>ρ (%)</th>
<th>f_{c14} (MPa)</th>
<th>f_{t14} (MPa)</th>
<th>V_f (%)</th>
<th>P_u (kN)</th>
<th>θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L07</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>1,73</td>
<td>88,7</td>
<td>5,3</td>
<td>0</td>
<td>101</td>
<td>18,6</td>
</tr>
<tr>
<td>L08</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>1,73</td>
<td>79,0</td>
<td>6,3</td>
<td>0,75</td>
<td>112</td>
<td>25,8</td>
</tr>
<tr>
<td>L09</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>1,73</td>
<td>93,0</td>
<td>7,6</td>
<td>1,5</td>
<td>136</td>
<td>17,0</td>
</tr>
<tr>
<td>Série</td>
<td>Modelos</td>
<td>h (cm)</td>
<td>d (cm)</td>
<td>c (cm)</td>
<td>ρ (%)</td>
<td>f_{c14} (MPa)</td>
<td>Tipo de fibra</td>
<td>V_t (%)</td>
<td>Variáveis estudadas</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>V1A</td>
<td>L1</td>
<td>10</td>
<td>8,5</td>
<td>8</td>
<td>1,57</td>
<td>25</td>
<td>--</td>
<td>0</td>
<td>f_c V_f</td>
</tr>
<tr>
<td>V1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2A</td>
<td>L2</td>
<td>10</td>
<td>8,5</td>
<td>8</td>
<td>1,57</td>
<td>25</td>
<td>ZP-305 DRAMIX</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>V2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V3A</td>
<td>L3</td>
<td>10</td>
<td>8,5</td>
<td>8</td>
<td>1,57</td>
<td>25</td>
<td>ZP-305 DRAMIX</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>V3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V4A</td>
<td>L4</td>
<td>10</td>
<td>8,5</td>
<td>8</td>
<td>1,57</td>
<td>60</td>
<td>--</td>
<td>0</td>
<td>f_c V_f</td>
</tr>
<tr>
<td>V4B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V5A</td>
<td>L5</td>
<td>10</td>
<td>8,5</td>
<td>8</td>
<td>1,57</td>
<td>60</td>
<td>ZP-305 DRAMIX</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>V5B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V6A</td>
<td>L6</td>
<td>10</td>
<td>8,5</td>
<td>8</td>
<td>1,57</td>
<td>60</td>
<td>ZP-305 DRAMIX</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>V6B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V7A</td>
<td>--</td>
<td>17</td>
<td>15,5</td>
<td>8</td>
<td>1,59</td>
<td>60</td>
<td>--</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>V7B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V8A</td>
<td>--</td>
<td>17</td>
<td>15,5</td>
<td>8</td>
<td>1,59</td>
<td>60</td>
<td>ZP-305 DRAMIX</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>V8B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V9A</td>
<td>--</td>
<td>17</td>
<td>15,5</td>
<td>8</td>
<td>1,59</td>
<td>60</td>
<td>ZP-305 DRAMIX</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>V9B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V10A</td>
<td>L7</td>
<td>10</td>
<td>8,5</td>
<td>8</td>
<td>1,57</td>
<td>40(1)</td>
<td>RL 45/50 BN</td>
<td>0,75</td>
<td>tipo de fibra</td>
</tr>
<tr>
<td>V10B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DRAMIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V11A</td>
<td>L8</td>
<td>10</td>
<td>8,5</td>
<td>8</td>
<td>1,57</td>
<td>40(1)</td>
<td>RL 45/50 BN</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>V11B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DRAMIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V12A</td>
<td>--</td>
<td>10</td>
<td>8,5</td>
<td>8</td>
<td>1,71</td>
<td>85(2)</td>
<td>--</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>V12B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V13A</td>
<td>--</td>
<td>10</td>
<td>8,5</td>
<td>8</td>
<td>1,71</td>
<td>85(2)</td>
<td>HSCF-25</td>
<td>0,75</td>
<td>tipo de fibra</td>
</tr>
<tr>
<td>V13B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HAREX</td>
<td></td>
<td>área carregada</td>
</tr>
<tr>
<td>V14A</td>
<td>--</td>
<td>10</td>
<td>8,5</td>
<td>8</td>
<td>1,71</td>
<td>85(2)</td>
<td>HSCF-25</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>V14B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HAREX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) traço utilizado por AZEVEDO (1999)
(2) traço utilizado por ZAMBRANA VARGAS (1997)

Na Tabela 4.16 encontram-se as características das fibras utilizadas neste trabalho.
Tabela 4.16 – Características das fibras utilizadas

<table>
<thead>
<tr>
<th>Fibra</th>
<th>seção</th>
<th>(l) (mm)</th>
<th>D (mm)</th>
<th>(l/D)</th>
<th>(f_y) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZP-305</td>
<td>circular</td>
<td>30</td>
<td>0,55</td>
<td>54,5</td>
<td>1150</td>
</tr>
<tr>
<td>DRAMIX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL 45/50 BN</td>
<td>circular</td>
<td>50</td>
<td>1,05</td>
<td>48</td>
<td>1000</td>
</tr>
<tr>
<td>DRAMIX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSCF-25</td>
<td>retangular</td>
<td>25(*)</td>
<td>0,667(*)</td>
<td>37,45(*)</td>
<td>770</td>
</tr>
<tr>
<td>HAREX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) valores nominais

4.3.3 Descrição dos modelos de vigas

Na Figura 4.20 encontram-se o detalhamento e a instrumentação das armaduras dos modelos de vigas da Série 1, na posição da concretagem (invertida).
Nas vigas V1 os pontos de instrumentação da armadura positiva localizados nos extremos (pontos 1 a 4) estavam posicionados a 6,5 cm da extremidade da viga, diferentemente do que está indicado na Figura 4.20. Depois de realizados os ensaios, verificou-se experimentalmente que a fissura crítica se apoia na armadura a 15 cm, em média, da face da viga. A partir daí, modificaram-se as posições dos pontos 1 a 4, ficando de acordo com a Figura 4.20.

Após a análise dos resultados das vigas V1, concluiu-se que as deformações obtidas nos pontos 11 e 12 eram praticamente nulas, passando-se a não instrumentá-los nas vigas V2 e V3.

Na Figura 4.21 encontram-se o detalhamento das armaduras e a instrumentação do aço dos modelos das vigas das Séries 2 e 4, na posição da concretagem. Na Série 2 em diante, passou-se a não mais instrumentar os pontos 7 a 10 da armadura comprimida, substituindo-os por rosetas coladas ao concreto.

Na Série 5 há uma pequena diferença na largura das vigas em relação ao desenho mostrado na Figura 4.21. Nessa série, a largura das vigas passa a ser 11 cm, pois precisava-se obter taxa de armadura de flexão semelhante a utilizada por ZAMBRANA VARGAS (1997). Além disso, a instrumentação das barras longitudinais resume-se apenas aos pontos centrais (5 e 6) e o concreto não foi instrumentado.
Na Figura 4.22 encontram-se o detalhamento das armaduras e a instrumentação do aço dos modelos das vigas da Série 3, na posição da concretagem.

Figura 4.22 – Detalhamento e instrumentação das armaduras da vigas da Série 3

Na Figura 4.23 e na Figura 4.24 encontram-se a instrumentação do concreto, por meio de rosetas coladas em uma das faces da viga, e o esquema da aplicação do carregamento.
4.4 Dosagem

Neste item encontra-se descrita a metodologia de dosagem dos concretos utilizados nos modelos das Séries 1, 2 e 3 desta pesquisa. Nas Séries 4 e 5 foram utilizados os traços de AZEVEDO (1999) e de ZAMBRANA VARGAS (1997), respectivamente.

Tabela 4.17 – Exigências para o concreto reforçado com fibras de aço e para o concreto de alta resistência

<table>
<thead>
<tr>
<th></th>
<th>Concreto Reforçado com Fibras de Aço</th>
<th>Concreto de Alta Resistência</th>
</tr>
</thead>
<tbody>
<tr>
<td>consumo de cimento</td>
<td>360 a 600 kg/m³ p/brita 0</td>
<td>400 a 600 kg/m³</td>
</tr>
<tr>
<td></td>
<td>300 a 540 kg/m³ p/brita 1</td>
<td></td>
</tr>
<tr>
<td>agregado miúdo</td>
<td></td>
<td>módulo de finura:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,7 a 3,2</td>
</tr>
<tr>
<td>agregado graúdo</td>
<td>diâmetro máximo:</td>
<td>diâmetro máximo: 12,7 mm</td>
</tr>
<tr>
<td></td>
<td>19 mm (brita 1)</td>
<td>cúbico; áspero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>módulo de finura ≅ 3,0</td>
</tr>
<tr>
<td>agregado miúdo/</td>
<td>45% a 60% p/brita 0</td>
<td>53% a 59% p/φ 12,5 mm</td>
</tr>
<tr>
<td>agregado graúdo</td>
<td>45% a 58% p/φ 12,5 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45% a 55% p/brita 1</td>
<td></td>
</tr>
<tr>
<td>agregado graúdo/total de</td>
<td>≤ 55%</td>
<td></td>
</tr>
<tr>
<td>agregados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>água/cimento</td>
<td>0,35 a 0,45 p/brita 0</td>
<td>0,35 a 0,46</td>
</tr>
<tr>
<td></td>
<td>0,35 a 0,46 p/φ 12,5 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,35 a 0,50 p/brita 1</td>
<td></td>
</tr>
<tr>
<td>água/materiais cimentícios</td>
<td>0,32 a 0,42 p/φ 12,5 mm</td>
<td>0,27 a 0,50</td>
</tr>
<tr>
<td>abatimento no tronco de cone</td>
<td>13 a 230 mm</td>
<td>102 mm</td>
</tr>
<tr>
<td></td>
<td>25 a 100 mm/p CRFA</td>
<td></td>
</tr>
<tr>
<td>tempo no tronco de cone</td>
<td>10 a 30 segundos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.4.1 Materiais

a) **Cimento**

Foi utilizado cimento portland comum (CP II-E-32) da marca Ribeirão, que tinha, segundo o fabricante, massa específica de 3,12 g/cm³, determinada de acordo com a ABNT (NBR 6474/1984).
b) Aditivo superplastificante

Nos concretos de alto desempenho, os aditivos superplastificantes são capazes de propiciar trabalhabilidade adequada, com baixas relações água/cimento, possibilitando o aumento da resistência do concreto à compressão.

Segundo LIMA (1997), para concretos de alto desempenho, o aditivo não deve ser empregado em um teor maior que 3% do peso de cimento. Mas, conforme QUEIROGA (1999), quando empregados em teores de até 1,5% do peso de cimento, proporcionam pouca incorporação de ar e têm pouca influência no tempo de pega. De acordo com o ACI 544.3R-93 (1994), os aditivos superplastificantes são adequados para o concreto reforçado com fibras de aço.

De acordo com LIMA (1997), o volume de sólidos presentes em um aditivo é em torno de 25 a 30% de sua massa.

Foi utilizado o aditivo superplastificante RX 3000, fornecido pela Reax Indústria e Comércio Ltda., cuja densidade era 1,16 g/cm³.

c) Água

A água utilizada foi proveniente da rede pública de abastecimento da cidade de São Carlos.

d) Agregado miúdo

Foi utilizada areia de origem quartzosa proveniente do rio Mogi-Guaçu. A areia era secada previamente, a ponto de apresentar-se completamente seca no momento da concretagem.

A análise granulométrica foi feita de acordo com a ABNT (NBR 7217/1987), e encontra-se na Tabela 4.18. Em função da granulometria, a areia foi classificada como fina, e apresentou módulo de finura igual a 2,37.

A massa específica foi determinada segundo a ABNT (NBR 9776/1987), e o valor encontrado foi de 2,591 g/cm³.
Tabela 4.18 – Análise granulométrica do agregado miúdo

<table>
<thead>
<tr>
<th>Peneira # (mm)</th>
<th>Material retido (g)</th>
<th>% ret.</th>
<th>Material retido (g)</th>
<th>% ret.</th>
<th>% ret. acumulada</th>
<th>Médias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M1 = 726,8 g</td>
<td></td>
<td>M2 = 727,1 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6,3</td>
<td>2,6</td>
<td>0,4</td>
<td>3,4</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4,8</td>
<td>1,8</td>
<td>0,3</td>
<td>2,6</td>
<td>0,4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2,4</td>
<td>18,3</td>
<td>2,5</td>
<td>19,3</td>
<td>2,7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1,2</td>
<td>56,6</td>
<td>7,9</td>
<td>49,2</td>
<td>6,8</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>0,6</td>
<td>213,8</td>
<td>29,7</td>
<td>193,8</td>
<td>26,9</td>
<td>28</td>
<td>39</td>
</tr>
<tr>
<td>0,3</td>
<td>274,3</td>
<td>38,1</td>
<td>276,9</td>
<td>38,4</td>
<td>38</td>
<td>77</td>
</tr>
<tr>
<td>0,15</td>
<td>144,1</td>
<td>20,0</td>
<td>165,9</td>
<td>23,0</td>
<td>22</td>
<td>99</td>
</tr>
<tr>
<td>Fundo</td>
<td>8,5</td>
<td>1,1</td>
<td>10,0</td>
<td>1,4</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Dimensão máxima característica: **2,4 mm**
Módulo de finura: **2,37**

e) Agregado graúdo

O agregado graúdo utilizado nas Séries 1, 2 e 3 foi pedrisco de origem basáltica, proveniente da Pedreira Santo Antônio, de Araraquara.

A massa específica foi determinada segundo a ABNT (NBR 9776/1987), sendo igual a 2,870 g/cm³. A massa unitária solta foi determinada segundo a ABNT (NBR 7251/1982), e foi encontrado o valor de 1,365 g/cm³.
Tabela 4.19 – Análise granulométrica do agregado graúdo

<table>
<thead>
<tr>
<th>Peneira # (mm)</th>
<th>material retido (g)</th>
<th>% retida</th>
<th>% retida acumulada</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12,5</td>
<td>8,5</td>
<td>0,17</td>
<td>0,17</td>
</tr>
<tr>
<td>9,5</td>
<td>3,0</td>
<td>0,06</td>
<td>0,23</td>
</tr>
<tr>
<td>6,3</td>
<td>170,5</td>
<td>3,41</td>
<td>3,64</td>
</tr>
<tr>
<td>4,8</td>
<td>1440</td>
<td>28,8</td>
<td>32,44</td>
</tr>
<tr>
<td>2,4</td>
<td>2650,0</td>
<td>53</td>
<td>85,44</td>
</tr>
<tr>
<td>Fundo</td>
<td>800,0</td>
<td>16</td>
<td>101,44</td>
</tr>
</tbody>
</table>

Dimensão máxima característica 6,3 mm

Módulo de finura 1,18

f) Fibras

As fibras de aço utilizadas nas Séries 1, 2 e 3 foram fornecidas pela empresa Belgo Mineira Bekaert Arames S/A. A Figura 4.25 apresenta as características da fibra utilizada.

O ACI 544.3R-93 (1994) recomenda que o comprimento da fibra não seja maior que o espaçamento entre as armaduras do elemento estrutural, e que esteja entre 12,7 e 63,5 mm, com relação de aspecto variando entre 30 e 100.

A ASTM (C1018-94b) recomenda que o comprimento da fibra não seja maior que 1/3 da menor dimensão do elemento estrutural a ser concretado. Além disso, recomenda-se que o comprimento da fibra seja maior ou igual a três vezes o diâmetro máximo do agregado. Daí o motivo de se utilizar o pedrisco juntamente com a fibra ZP-305 da DRAMIX (Figura 4.25), nas Séries 1, 2 e 3.
Figura 4.25 – Características da fibra utilizada nas Séries 1, 2 e 3 (www.bekaert.com/building/zp305.htm)
4.4.2 Concreto de baixa resistência

Neste item apresenta-se o método de determinação do traço do concreto de resistência à compressão de aproximadamente 25 MPa aos 14 dias, utilizando-se o método de dosagem de HELENE & TERZIAN (1993).

a) Determinação do traço do concreto sem fibras

A primeira etapa do estudo experimental consistiu na determinação do teor ideal de argamassa seca (α) para o concreto de traço 1:3, considerado o traço "normal" para microconcreto, uma vez que este requer maior teor de argamassa do que o concreto comum. Para isso, testaram-se várias combinações de teores de areia e pedrisco, a fim de se determinarem as porcentagens de cada um, as quais resultariam na maior massa unitária. Concluiu-se que as porcentagens ideais seriam 55% de pedrisco e 45% de areia, resultando num teor de argamassa seca de 58,8%.

O consumo de cimento deveria estar entre 360 e 600 kg/m³. Devido à baixa resistência do concreto, não foi possível atender à exigência de baixo fator a/c, ou seja, entre 0,35 a 0,50.

Escolhido o teor ideal de argamassa seca, obtiveram-se mais dois traços (1 : m ±1), um rico e um pobre, e fizeram-se as três misturas experimentais, descritas na Tabela 4.20. Nas três misturas, o fator a/c foi controlado de modo a se obter o abatimento desejado, em torno de 100 mm (ABNT NBR 7223/1992).

As misturas experimentais foram feitas na betoneira estacionária da marca CIBI, com capacidade para 50 litros de concreto.

Para cada uma das três misturas foram moldados três corpos-de-prova cilíndricos de dimensões 10 x 20 cm, para serem ensaiados à compressão axial aos 14 dias (ABNT NBR 5739/1994). As dimensões dos corpos-de-prova foram escolhidas já pensando no CAR, a fim de padronizar o tamanho dos corpos-de-prova utilizados nos ensaios desta pesquisa. Os corpos-de-prova eram preenchidos até a metade e adensados em mesa vibratória, e após totalmente preenchidos, nova vibração era aplicada (ABNT NBR 5738/1994).
Tabela 4.20 – Misturas experimentais para os concretos sem fibra

<table>
<thead>
<tr>
<th>Traço em massa</th>
<th>1:m 1:a:p</th>
<th>1:2 1:0,76:1,2</th>
<th>1:3 1:1,35:1,65</th>
<th>1:4 1:1,94:2,06</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teor de argamassa¹ (%)</td>
<td>58,8</td>
<td>58,8</td>
<td>58,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedrisco (kg)</td>
<td>19,85</td>
<td>19,80</td>
<td>19,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areia (kg)</td>
<td>12,15</td>
<td>16,20</td>
<td>18,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cimento (kg)</td>
<td>16,00</td>
<td>12,00</td>
<td>9,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Água (kg)</td>
<td>5,60</td>
<td>6,00</td>
<td>6,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relação a/c</td>
<td>0,35</td>
<td>0,50</td>
<td>0,65</td>
<td>x = f(aba)</td>
<td></td>
</tr>
<tr>
<td>Aditivo superplastificante (kg)</td>
<td>0,070</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo por m³ de concreto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cimento (kg)</td>
<td>716,42</td>
<td>533,33</td>
<td>424,77</td>
<td>360 a 600</td>
<td></td>
</tr>
<tr>
<td>Água (l)</td>
<td>250,75</td>
<td>266,67</td>
<td>276,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abatimento do tronco de cone (mm)</td>
<td>70</td>
<td>130</td>
<td>150</td>
<td>≅ 100 mm</td>
<td></td>
</tr>
<tr>
<td>Nº dos corpos-de-prova</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistência à compressão axial (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 d (média 3 CP)</td>
<td>60,86</td>
<td>40,64</td>
<td>24,02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A partir dos resultados encontrados na Tabela 4.20, puderam ser encontrados, para a resistência de dosagem requerida, os valores correspondentes do fator a/c, do consumo de cimento, e da relação agregados secos (m)/cimento em massa.

Portanto, definiu-se o seguinte traço em massa para o concreto sem fibras de resistência à compressão de aproximadamente 20 MPa aos 14 dias:

Traço 3
1:1,94:2,06:0,65 (0% SP)

¹ Teor de argamassa: \(\alpha = \frac{1 + a}{1 + m} \) onde m = a + p
b) Determinação dos traços dos compósitos de baixa resistência

Na determinação do traço do concreto reforçado com fibras e resistência à compressão de aproximadamente 25 MPa aos 14 dias, manteve-se o mesmo teor de argamassa seca do concreto sem fibras de mesma resistência. Assim, fizeram-se novamente as misturas experimentais (traços 3A e 3B) na proporção 1:4, com teor de argamassa 58,8% e relação a/c=0,65.

O volume de fibras adicionado na primeira mistura foi de 1% do volume de concreto (78,5 kg/m³) e na segunda, 2% do volume de concreto (157 kg/m³), máximo recomendado pelo ACI 544.1R-82 (1987) para se obter trabalhabilidade razoável por meio de métodos convencionais de mistura.

Nesses compósitos, o abatimento desejado do tronco de cone seria também de aproximadamente 100 mm (ASTM C143-90a).

Para se obter este abatimento com a adição das fibras, sem alterar a relação a/c, foi preciso adicionar aditivo superplastificante nas duas misturas. Segundo o ACI 544.3R-93 (1994), a melhor medida da trabalhabilidade de um concreto reforçado com fibras de aço não é o abatimento do tronco de cone. Este ensaio é útil apenas para comparar diferentes lotes de concreto. Ensaios com o tempo VB e o tempo de fluxo no cone invertido (ASTM C995-94) são mais indicados, porém não foram utilizados nesta pesquisa.

<table>
<thead>
<tr>
<th>Material</th>
<th>Consumo (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cimento</td>
<td>424,77</td>
</tr>
<tr>
<td>Areia</td>
<td>824,05</td>
</tr>
<tr>
<td>Pedrisco</td>
<td>875,03</td>
</tr>
<tr>
<td>Água</td>
<td>276,10</td>
</tr>
<tr>
<td>Traço em massa</td>
<td>1:m 1:a:p</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Teor de argamassa (%)</td>
<td>58,8</td>
</tr>
<tr>
<td>Pedrisco (kg)</td>
<td>18,85</td>
</tr>
<tr>
<td>Areia (kg)</td>
<td>17,75</td>
</tr>
<tr>
<td>Cimento (kg)</td>
<td>9,15</td>
</tr>
<tr>
<td>Água (kg)</td>
<td>5,95</td>
</tr>
<tr>
<td>Relação a/c</td>
<td>0,65</td>
</tr>
<tr>
<td>Aditivo superplastificante (kg)</td>
<td>0,070</td>
</tr>
<tr>
<td>Fibras (kg)</td>
<td>1,52</td>
</tr>
<tr>
<td>Consumo por m³ de concreto</td>
<td></td>
</tr>
<tr>
<td>Cimento (kg)</td>
<td>424,77</td>
</tr>
<tr>
<td>Água (l)</td>
<td>276,10</td>
</tr>
<tr>
<td>Abatimento do tronco de cone (mm)</td>
<td>190</td>
</tr>
<tr>
<td>Nº dos corpos-de-prova</td>
<td>3A</td>
</tr>
<tr>
<td>Resistência à compressão axial (MPa) 14 d (média 3 CP)</td>
<td>22,06</td>
</tr>
</tbody>
</table>

A partir dos resultados encontrados na Tabela 4.21, puderam ser encontrados, para a resistência de dosagem requerida, os valores correspondentes do fator a/c, do consumo de cimento, e da relação agregados secos (m)/cimento em massa.

Foram definidos os seguintes traços em massa para os compósitos de resistência à compressão de aproximadamente 25 MPa aos 14 dias, com 1% e 2% de fibras respectivamente:

Traço 3A
1:1,94:2,06:0,65:0,17 (0,66% SP)
CI AR PE AG FI
4.4.3 Concreto de alta resistência

Neste item foi determinado o traço do concreto de resistência à compressão de aproximadamente 60 MPa aos 14 dias, utilizando-se o método de dosagem de HELENE & TERZIAN (1993), porém com algumas adaptações referentes ao CAR.

a) Determinação do traço do concreto sem fibras

A determinação do teor de argamassa seca (α) para o concreto de traço 1:3 já foi descrita no item 4.4.2a). Foram, portanto, utilizadas as porcentagens de 55% de pedrisco e 45% de areia, resultando num teor de argamassa seca de 58,8%.

O consumo de cimento deveria estar entre 360 e 600 kg/m3, entretanto ficou um pouco maior. Isto é justificável, pois a exigência encontrada na Tabela 4.17 é válida para agregado de diâmetro máximo 9,5 mm, enquanto que foi utilizado um agregado de diâmetro máximo 6,3 mm, necessitando um maior teor de argamassa. Foi possível atender à exigência de baixo fator a/c, ou seja, entre 0,35 a 0,50.

A partir dos resultados encontrados na Tabela 4.20, puderam ser encontrados, para a resistência de dosagem desejada, os valores correspondentes.
do fator a/c, do consumo de cimento, e da relação agregados secos (m)/cimento em massa.

Portanto, definiu-se o seguinte traço em massa para o concreto sem fibras de resistência à compressão de aproximadamente 60 MPa aos 14 dias:

Traço 1
1:0,76:1,24:0,35 (0,38% SP)

<table>
<thead>
<tr>
<th>Material</th>
<th>Consumo (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cimento</td>
<td>716,42</td>
</tr>
<tr>
<td>Areia</td>
<td>544,48</td>
</tr>
<tr>
<td>Pedrisco</td>
<td>888,36</td>
</tr>
<tr>
<td>Água</td>
<td>250,75</td>
</tr>
</tbody>
</table>

b) Determinação dos traços dos compósitos de alta resistência

Na determinação do traço do concreto reforçado com fibras e resistência à compressão de aproximadamente 60 MPa aos 14 dias, manteve-se o mesmo teor de argamassa seca do concreto sem fibras de mesma resistência. Assim, fizeram-se novamente as misturas experimentais (traços 1A e 1B) na proporção 1:2, com teor de argamassa 58,8% e relação a/c=0,35.

O volume de fibras adicionado na primeira mistura foi de 1% do volume de concreto (78,5 kg/m³) e na segunda, 2% do volume de concreto (157 kg/m³).

Nesses compósitos, o abatimento desejado do tronco de cone seria também de aproximadamente 100 mm (ASTM C143-90a).

Para se obter este abatimento com a adição das fibras, sem alterar a relação a/c, foi preciso adicionar aditivo superplastificante nas duas misturas.
Tabela 4.22 – Misturas experimentais para os compósitos (f_{c14} ≅ 60 MPa)

<table>
<thead>
<tr>
<th>Traço em massa</th>
<th>1:m</th>
<th>1:a:p</th>
<th>Traço 1A 1:2</th>
<th>Traço 1B 1:2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1:0,76:1,24</td>
<td>1:0,76:1,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teor de argamassa (%)</td>
<td>58,8</td>
<td>58,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedrisco (kg)</td>
<td>18,85</td>
<td>18,85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areia (kg)</td>
<td>11,55</td>
<td>11,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cimento (kg)</td>
<td>15,20</td>
<td>15,20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Água (kg)</td>
<td>5,30</td>
<td>5,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relação a/c</td>
<td>0,35</td>
<td>0,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aditivo superplastificante (kg)</td>
<td>0,150</td>
<td>0,150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibras (kg)</td>
<td>1,52</td>
<td>3,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo por m³ de concreto</td>
<td></td>
<td></td>
<td>360 a 600</td>
<td>360 a 600</td>
</tr>
<tr>
<td>Cimento (kg)</td>
<td>716,42</td>
<td>716,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Água (l)</td>
<td>250,75</td>
<td>250,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abatimento do tronco de cone (mm)</td>
<td>170</td>
<td>140</td>
<td>≥ 100 mm</td>
<td></td>
</tr>
<tr>
<td>Nº dos corpos-de-prova</td>
<td>1A</td>
<td>1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistência à compressão axial (MPa)</td>
<td>58,59</td>
<td>56,18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A partir dos resultados encontrados na Tabela 4.22, puderam ser encontrados, para a resistência de dosagem requerida, os valores correspondentes do fator a/c, do consumo de cimento, e da relação agregados secos (m)/cimento em massa.

Foram definidos os seguintes traços em massa para os compósitos de resistência à compressão de aproximadamente 60 MPa aos 14 dias, com 1% e 2% de fibras respectivamente:

Traço 1A
1:0,76:1,24:0,35:0,10 (0,85% SP)

CI AR PE AG FI
<table>
<thead>
<tr>
<th>Material</th>
<th>Consumo (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cimento</td>
<td>716,42</td>
</tr>
<tr>
<td>Areia</td>
<td>544,48</td>
</tr>
<tr>
<td>Pedrisco</td>
<td>888,36</td>
</tr>
<tr>
<td>Água</td>
<td>250,75</td>
</tr>
<tr>
<td>Fibra</td>
<td>78,50</td>
</tr>
</tbody>
</table>

Traço 1B
1:0,76:1,24:0,35:0,20 (1,42% SP)

CI AR PE AG FI

<table>
<thead>
<tr>
<th>Material</th>
<th>Consumo (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cimento</td>
<td>716,42</td>
</tr>
<tr>
<td>Areia</td>
<td>544,48</td>
</tr>
<tr>
<td>Pedrisco</td>
<td>888,36</td>
</tr>
<tr>
<td>Água</td>
<td>250,75</td>
</tr>
<tr>
<td>Fibra</td>
<td>157,00</td>
</tr>
</tbody>
</table>
5 Resultados Experimentais

Neste capítulo apresentam-se os resultados experimentais obtidos, suas respectivas análises e algumas conclusões parciais. O capítulo foi subdividido em itens, e cada uma das séries de ensaios se encontra descrita em um determinado item.

5.1 Modelos da Série 1

Na primeira série foram ensaiadas três lajes de concreto, com resistência à compressão de aproximadamente 25 MPa aos 14 dias, reforçadas com fibras ZP-305 da DRAMIX, variando-se a porcentagem de fibras. Para cada laje foram moldadas duas vigas, com o mesmo concreto. O detalhamento das lajes e das vigas encontra-se no Capítulo 4.

Nesta série de ensaios pretendeu-se verificar se permaneceriam as correlações existentes entre laje e viga, observadas nos Ensaios Piloto S1, alterando-se o volume de fibras e utilizando-se um concreto de baixa resistência.

5.1.1 Características dos materiais da S1

Na Tabela 5.1 apresentam-se as características médias das armaduras de flexão. Foram ensaiadas três barras de aço de cada bitola, segundo a ABNT (NBR 6152/1992).

<table>
<thead>
<tr>
<th>Bitola</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mm</td>
<td>698,80</td>
<td>757,42</td>
<td>205760</td>
<td>5,396</td>
</tr>
<tr>
<td>10 mm</td>
<td>548,63</td>
<td>691,09</td>
<td>205000</td>
<td>2,676</td>
</tr>
</tbody>
</table>

Tabela 5.1 – Características médias das armaduras de flexão dos modelos da Série 1
Na Tabela 5.2 apresenta-se o traço do concreto utilizado nos modelos, determinado conforme exposto no Capítulo 4.

Tabela 5.2 – Traço do concreto dos modelos da Série 1

<table>
<thead>
<tr>
<th>Traço 1:1,94:2,06:0,65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materiais</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cimento Ribeirão CP II-E-32</td>
</tr>
<tr>
<td>Areia</td>
</tr>
<tr>
<td>Pedrisco (φmax=6,3 mm)</td>
</tr>
<tr>
<td>Água</td>
</tr>
<tr>
<td>Aditivo Superplastificante</td>
</tr>
<tr>
<td>REAX 3000 (γ = 1,16 kg/m³)</td>
</tr>
<tr>
<td>Fibra ZP-305 DRAMIX</td>
</tr>
<tr>
<td>l = 30 mm</td>
</tr>
<tr>
<td>D = 0,55 mm</td>
</tr>
<tr>
<td>l / D = 54,5</td>
</tr>
<tr>
<td>fy = 1150 MPa</td>
</tr>
</tbody>
</table>

Na Tabela 5.3 estão mostradas a médias dos resultados dos ensaios de caracterização do concreto utilizado nos modelos da Série 1. Para cada tipo de ensaio, foi efetuada a média dos resultados de no mínimo três corpos-de-prova. Os resultados de cada corpo-de-prova, bem como as idades dos ensaios, encontram-se no Anexo. Os corpos-de-prova cilíndricos foram moldados conforme as recomendações da ABNT (NBR 5738/1994). Os ensaios de compressão simples foram realizados segundo a ABNT (NBR 5739/1994), os de tração por compressão diametral, segundo a ABNT (NBR 7222/1994), os de tração na flexão, segundo a ABNT (MB 3483/1994), e o módulo secante de deformação, segundo a ABNT (NBR 8522/1984).

Percebe-se que a presença de fibras não alterou significativamente o módulo de deformação longitudinal do concreto, com pequena diminuição desse
módulo com o aumento do volume de fibras, sendo a maior diferença em torno de 7%.

Tabela 5.3 – Resultados dos ensaios de caracterização dos concretos utilizados na Série 1

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Volume de fibras (%)</th>
<th>f_c (MPa)</th>
<th>$f_{ct,sp}$ (MPa)</th>
<th>$f_{ct,f}$ (MPa)</th>
<th>f_r (MPa)</th>
<th>E_c (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 V1A,V1B</td>
<td>0</td>
<td>23,13</td>
<td>2,14</td>
<td>3,70</td>
<td>--</td>
<td>20786</td>
</tr>
<tr>
<td>L2 V2A,V2B</td>
<td>1</td>
<td>24,40</td>
<td>2,59</td>
<td>4,07</td>
<td>3,30</td>
<td>20034</td>
</tr>
<tr>
<td>L3 V3A,V3B</td>
<td>2</td>
<td>28,06</td>
<td>2,98</td>
<td>6,96</td>
<td>3,68</td>
<td>19319</td>
</tr>
</tbody>
</table>

$f_{ct,sp}$: resistência à tração por compressão diametral
$f_{ct,f}$: resistência à tração na flexão
f_r: resistência do compósito à primeira fissura

Nos compósitos foram feitos ensaios para a determinação da resistência à primeira fissura e da tenacidade à flexão, em prismas de 15 x 15 x 50 cm, conforme as recomendações da ASTM (C78-94). Para cada compósito foram ensaiados três prismas, da forma como mostrado na Figura 5.1. O ensaio era feito com deformação controlada, o carregamento era aplicado nos terços do vão, e os deslocamentos verticais da região central eram medidos em dois pontos simétricos, a partir dos quais fazia-se a média.
A ASTM (C1018-94) define a tenacidade como sendo a energia equivalente à área sob a curva força x deslocamento até um determinado valor de deslocamento vertical, correspondente à ocorrência da primeira fissura (observada graficamente). Os índices I5, I10, I20 e I30 correspondem aos deslocamentos de 3, 5, 10, 15 vezes o deslocamento correspondente à primeira fissura.

A JSCE-SF4/84 define a tenacidade como sendo a energia necessária para fletir uma viga de concreto reforçado com fibras até um deslocamento de 1/150 do vão, medido no meio do vão. A Figura 5.2 mostra resumidamente como esses índices são determinados.

Na Tabela 5.4 apresentam-se os índices médios de tenacidade à flexão, calculados a partir dos gráficos força x deslocamento de cada prisma e efetuando-se as médias dos índices de um mesmo compósito. Os índices de tenacidade à flexão de cada prisma encontram-se no Anexo.
Na Tabela 5.4, observa-se que os índices de tenacidade à flexão, determinados pelas duas normas, mostram um aumento de tenacidade provocado pela duplicação do teor de fibras. Os valores dos índices são um pouco estranhos, pois no caso dos prismas P3, I₅ é maior do que 5, I₁₀ é maior do que 10 e assim sucessivamente. Isto significa que o comportamento da curva força versus deslocamento deveria se aproximar do comportamento elasto-plástico perfeito, o que de fato não aconteceu, conforme se verifica nos gráficos apresentados no Anexo. A norma japonesa tem a vantagem sobre a ASTM (C1018-94) de não precisar determinar o ponto exato de ocorrência da primeira fissura, no qual sempre está embutido um grau de incerteza e subjetividade. Sendo assim, os índices determinados pela JSCE-SF4/84 podem ser considerados mais confiáveis.

De acordo com BANTHIA & TROTTIER (1995), os índices I₅ e I₁₀ para concretos de baixa e média resistência são frequentemente obtidos na zona de instabilidade, sendo irreais. Até mesmo o I₂₀ está sujeito a esta interferência em CAR. No método da JSCE-SF4/84, a instabilidade pós-pico não afeta muito, devido ao fato de que o deslocamento de ℓ/150 está em um ponto suficientemente afastado da curva, e a instabilidade ocorre na porção inicial. Neste caso, no entanto, não se observa trecho de instabilidade pós-pico nos prismas da Série 1, conforme mostra os gráficos apresentados no Anexo.

Na Tabela 5.5 apresentam-se as previsões das cargas de ruína à punção e à flexão das lajes, e das cargas de ruína ao cisalhamento e à flexão das vigas, considerando uma resistência do concreto média de 25 MPa. As fibras não foram consideradas nos cálculos.

Para a estimativa da carga de ruína das lajes à punção, foi utilizada a ABNT (NBR 6118/2001). Para a estimativa da carga de ruína à flexão foi utilizada a Teoria das Charneiras Plásticas (Figura 5.3), sendo o valor da força determinado pela

Tabela 5.4 – Índices médios de tenacidade à flexão dos compósitos da Série 1

<table>
<thead>
<tr>
<th>Prisma</th>
<th>Volume de fibras (%)</th>
<th>Índices de tenacidade</th>
<th>ASTM C1018</th>
<th>JSCE-SF4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I₅</td>
<td>I₁₀</td>
</tr>
<tr>
<td>P2</td>
<td>1</td>
<td>4,6</td>
<td>8,9</td>
<td>17,3</td>
</tr>
<tr>
<td>P3</td>
<td>2</td>
<td>5,5</td>
<td>11,6</td>
<td>24,6</td>
</tr>
</tbody>
</table>

\[P_{fe} = 2 \pi M_u \]
\[(5.1) \]

O momento fletor último das lajes, por unidade de comprimento, foi determinado por meio do diagrama de distribuição de tensões da ABNT (NBR 6118/2001), estando de acordo com a Equação 5.2.

\[M_u = \rho \cdot f_y \cdot d^2 \left(1 - 0,5 \cdot \rho \cdot \frac{f_y}{f_c} \right) \]
\[(5.2) \]

onde \(\rho \) é a taxa de armadura de flexão da laje, \(d \) é a altura útil da laje, \(f_y \) é a tensão de escoamento da armadura de flexão e \(f_c \) é a resistência do concreto à compressão.

No caso das vigas, para a estimativa da carga de ruína à flexão e ao cisalhamento, utilizou-se a ABNT (NBR 6118/2001).

<table>
<thead>
<tr>
<th>Lajes</th>
<th>Vigas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{pun}) (kN)</td>
<td>(P_{fle}) (kN)</td>
</tr>
<tr>
<td>155,52</td>
<td>286,70</td>
</tr>
</tbody>
</table>

5.1.2 Ensaio das lajes da Série 1

Na Figura 5.4 e na Figura 5.5 apresentam-se fotografias do sistema de ensaio das ligações laje-pilar, mostrando os transdutores de deslocamento na linha de apoio e no centro da laje, bem como a aplicação do carregamento por meio da chapa de aço simulando o pilar.
Na Tabela 5.6 apresentam-se alguns dados e resultados dos modelos de ligação laje-pilar da Série 1. Verifica-se que as fibras atuam de forma semelhante a uma armadura de cisalhamento, proporcionando aumento da rotação última das lajes. Além disso, a inclinação da fissura crítica de punção aumentou com a adição das fibras de aço.
Na última coluna da tabela estão calculados os índices de ductilidade das lajes, dados pela relação entre os deslocamentos últimos (Δ_u) e os que correspondem ao escoamento da armadura de tração (Δ_y). Os deslocamentos correspondentes ao escoamento da armadura de tração foram determinados nos gráficos força x deslocamento do ponto central, conforme a teoria do item 2.4 do Capítulo 2.

Tabela 5.6 – Dados e resultados das lajes da Série 1

<table>
<thead>
<tr>
<th>Modelo</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>ρ (%)</th>
<th>V_f (%)</th>
<th>$V_{f(crit)}$ (%)</th>
<th>P_r (kN)</th>
<th>P_y (kN)</th>
<th>Δ_y (mm)</th>
<th>P_u (kN)</th>
<th>Δ_u (mm)</th>
<th>θ (°)</th>
<th>ψ_u (rad)</th>
<th>Δ_u/Δ_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>10</td>
<td>8</td>
<td>1,57</td>
<td>0</td>
<td>--</td>
<td>38,6</td>
<td>117,53</td>
<td>2,29</td>
<td>137,20</td>
<td>3,29</td>
<td>26,4</td>
<td>64,2x10^-4</td>
<td>1,44</td>
</tr>
<tr>
<td>L2</td>
<td>10</td>
<td>8</td>
<td>1,57</td>
<td>1</td>
<td>2,4</td>
<td>53,9</td>
<td>131,15</td>
<td>2,94</td>
<td>139,55</td>
<td>3,96</td>
<td>31,6</td>
<td>77,4x10^-4</td>
<td>1,35</td>
</tr>
<tr>
<td>L3</td>
<td>10</td>
<td>8</td>
<td>1,57</td>
<td>2</td>
<td>2,6</td>
<td>55,7</td>
<td>140,10</td>
<td>2,89</td>
<td>163,62</td>
<td>4,39</td>
<td>30,2</td>
<td>85,7x10^-4</td>
<td>1,52</td>
</tr>
</tbody>
</table>

P_r: carga correspondente à 1ª fissura de flexão (retirada do gráfico P x u)
θ: ângulo médio da superfície de ruína em relação ao plano médio do elemento, medido experimentalmente
ψ_u: rotação última da laje

Os deslocamentos na ruína aumentaram com a adição de fibras. Isso é atribuído à capacidade dos modelos de sustentar grandes rotações nas regiões de concreto comprimido. Observa-se na Tabela 5.6 o aumento da rotação última dos modelos com fibras em relação ao modelo sem fibras.

Na Figura 5.6 apresenta-se o gráfico da força aplicada versus o deslocamento do ponto central de todos os modelos de ligação laje-pilar da Série 1. No gráfico da Figura 5.7, a força foi normalizada em função da raiz quadrada da resistência do concreto à compressão. Esse artifício foi utilizado porque houve algumas pequenas diferenças nos valores de f_c entre os elementos de uma mesma série. Desse gráfico observa-se o ganho de resistência proporcionado pela adição das fibras de aço ao concreto, quando se adiciona 2% de fibras (L3).
Resultados Experimentais

Figura 5.6 – Gráfico Força x Deslocamento das ligações laje-pilar da Série 1

Figura 5.7 – Gráfico Força Normalizada x Deslocamento das ligações laje-pilar da Série 1

No gráfico da Figura 5.8 obtém-se uma melhor avaliação da ductilidade dos modelos, de modo independente das resistências à punção alcançadas,
comparando-se as áreas sob as curvas força versus deslocamento. Observa-se que, apesar das lajes L1 e L2 terem praticamente a mesma resistência, o aumento do volume de fibras de 0% para 1% fez a ductilidade da L2 ser maior do que a da L1.

As cargas de ruína das lajes L1 e L2 foram muito próximas, o que em princípio pode ter algumas justificativas. Pode ter acontecido algum problema, que não foi percebido, durante a moldagem do modelo ou a execução do ensaio; ou, ainda, pelo fato de ter sido feito apenas um modelo de cada laje, o resultado de L2 pode não ser representativo.

Figura 5.8 – Gráfico Força/Força de pico x Deslocamento das lajes da Série 1

Na Figura 5.9 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados (1 e 5) das armaduras negativas de flexão (φ 10mm) das lajes da Série 1. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.
Do gráfico da Figura 5.9, nota-se que na fase pré-pico, nos três modelos, nenhum ponto instrumentado das armaduras escoou. Os extensômetros da armadura da laje L2 apresentaram deformações últimas um pouco maiores que os da armadura da laje L1. Os extensômetros da armadura da laje L3 apresentaram as maiores deformações últimas, comparando-se os três modelos, demonstrando que, na laje com o maior volume de fibras, a armadura positiva de flexão foi mais solicitada.

Na Figura 5.10 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados (9 e 13) das armaduras positivas de flexão (φ 5mm) das lajes da Série 1. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.
Do gráfico da Figura 5.10, nota-se que as armaduras dos três modelos estavam solicitadas à compressão até eles atingirem a carga última. Depois elas passaram a ser solicitadas à tração, devido ao efeito de membrana tracionada. Segundo PARK & GAMBLE (2000), esse efeito ocorre mesmo em lajes simplesmente apoiadas. A mudança de forma do plano médio da laje, causado pelo aumento dos deslocamentos, faz com que as fissuras existentes na superfície da região central da laje penetrem por toda a sua espessura. A linha neutra deixa de cortar a seção central, ficando toda ela tracionada. O efeito de arqueamento diminui até as forças longitudinais de compressão mudarem para tração (GUARDA, 1995). Nesta situação, só as armaduras resistem aos esforços, atuando como uma membrana tracionada. A ação de membrana tracionada é importante na prevenção do colapso progressivo.

Em L2 e em L3, reforçadas com fibras, as deformações de tração alcançadas na fase pós-pico foram maiores do que em L1.

5.1.3 Ensaio das vigas da Série 1

Na Figura 5.11 apresenta-se o sistema de ensaio das vigas da Série 1, aproveitando o pórtico e o atuador usados nos ensaios das lajes. Foram colocados
dois transdutores de curso 20 mm no centro da viga e dois de curso 10 mm nos apoios.

As vigas foram ensaiadas à flexão com carregamento centrado, por meio da mesma chapa de aço utilizada nas lajes. Elas foram dimensionadas para romperem por cisalhamento por tração diagonal ($a/d = 3,1$).

![Figura 5.11 – Sistema de ensaio das vigas V1, V2 e V3A](image)

Na Tabela 4.6 apresentam-se alguns dados e resultados dos ensaios das vigas.

Tabela 5.7 – Dados e resultados das vigas da Série 1

<table>
<thead>
<tr>
<th>Viga</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>b (cm)</th>
<th>ρ (%)</th>
<th>V_f (%)</th>
<th>F_r (kN)</th>
<th>$F_{r(\text{teo})}$ (kN)</th>
<th>F_u (kN)</th>
<th>θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1A</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>0</td>
<td>8,0</td>
<td>13,9</td>
<td>6,23</td>
<td>40</td>
</tr>
<tr>
<td>V1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2A</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>1</td>
<td>11,7</td>
<td>14,5</td>
<td>7,54</td>
<td>26</td>
</tr>
<tr>
<td>V2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>V3A</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>2</td>
<td>15,0</td>
<td>15,0</td>
<td>8,67</td>
<td>28</td>
</tr>
<tr>
<td>V3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

F_r: carga correspondente à 1ª fissura de flexão (retirada do gráfico $F \times u$)

$F_{\text{r(\text{teo})}}$: carga correspondente à 1ª fissura de flexão (calculada segundo o ACI 318 (1999))

θ: ângulo médio da superfície de ruína em relação ao plano médio do elemento, medido experimentalmente
De acordo com o esperado, para a relação a/d utilizada, a ruína das vigas foi por tração diagonal, sendo que o ângulo que a fissura crítica faz com a horizontal foi maior para os modelos V1 e menor para os V3. Na Figura 5.12 apresenta-se a configuração de ruína das vigas da Série 1.

Como não havia estribos, as vigas V1 romperam de forma brusca, sem aviso prévio, caracterizando claramente uma ruína por cisalhamento. As vigas sem fibras não se mantiveram íntegras após a ruína, fato que ocorreu nas vigas com fibras. Não surgiram fissuras visíveis de flexão nas vigas V1; a primeira fissura já foi inclinada e tornou-se crítica, subindo rapidamente até o ponto de aplicação da carga. A abertura da fissura crítica foi bem grande, comparada com a abertura das fissuras críticas das vigas com fibras.

Figura 5.12 – Configuração de ruína das vigas da Série 1
Nas vigas V2 inicialmente surgiram fissuras de flexão, e as primeiras fissuras de cisalhamento se originaram a partir das de flexão. As demais fissuras de cisalhamento não se originaram das de flexão. Surgiram várias fissuras inclinadas, e não uma única, como no caso das vigas V1.

Nas vigas V3 inicialmente surgiram muitas fissuras de flexão. A primeira fissura visível de flexão de V3A foi com a carga de aproximadamente 20 kN; as fissuras inclinadas surgiram depois da carga de aproximadamente 35 kN. A fissura crítica de cisalhamento só apareceu no instante da ruína e não foi continuação de nenhuma fissura inclinada. O ensaio da viga V3A foi feito aplicando-se carga de 5 em 5 kN. Desta forma foi possível marcar as fissuras ao longo do ensaio. Os demais ensaios, a partir do da viga V3B, foram feitos de forma contínua, utilizando-se um dispositivo conhecido como “yoke”, para medição dos deslocamentos (Figura 5.13). Com esse dispositivo, foi possível medir os deslocamentos absolutos dos pontos centrais sem ter que descontar o deslocamento dos apoios, obtendo-se, assim, um valor mais preciso. O dispositivo foi confeccionado especialmente para o tamanho das vigas utilizadas na pesquisa, sendo uma variação do “yoke” mencionado nas normas japonesas.
Resultados Experimentais

Na Figura 5.14 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados das vigas V1. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

Do gráfico observa-se que os pontos 11 e 12 da armadura comprimida, localizados na região central de concreto comprimido, não apresentaram deformações próximas à de esmagamento do concreto. Isso indica que a ruína das vigas foi por tração diagonal, o que causou a ruptura da biela comprimida.

Ainda no gráfico da Figura 5.14, observa-se que os pontos 5 e 6, localizados na armadura na região de momento fletor máximo, não apresentaram deformação de escoamento, chegando em média a 1,3‰. A fissura crítica apareceu do lado onde estavam localizados os pontos 1 e 2, sendo que nessa região a armadura apresentou deformação de tração de valor próximo ao dos pontos centrais.
Na Figura 5.15 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados das vigas V2. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

Do gráfico observa-se que os pontos 5 e 6, localizados na armadura na região de momento fletor máximo, apresentaram valor médio de 2,1‰, bem maior do que o registrado nas vigas V1, e próximo ao valor da deformação de escoamento. Além disso, todas as deformações de tração das vigas V2 foram de valor maior do que as das vigas V1.

A fissura crítica apareceu do lado onde estavam localizados os pontos 1 e 2, sendo que nessa região, a armadura apresentou deformação de tração de valor próximo aos dos pontos centrais. As deformações de compressão continuaram pequenas, porém os valores foram o dobro dos das vigas V1.

Nos modelos sem fibras, a fissura diagonal formou-se em apenas um dos lados das vigas, enquanto que nos modelos com fibras as fissuras diagonais se formaram nos dois lados das vigas.
Na Figura 5.16 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados das vigas V3. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

Do gráfico observa-se que os pontos 5 e 6, localizados na armadura na região de momento fletor máximo, apresentaram valor médio de 2,1‰, muito semelhante ao registrado nas vigas V2, e próximo ao valor da deformação de escoamento. Tanto nas vigas V1, como nas V2 e nas V3, pode-se considerar o efeito de pino da armadura longitudinal, já que ela não escoou em nenhum ponto.

A fissura crítica apareceu do lado onde estavam localizados os pontos 3 e 4, sendo que nessa região a armadura apresentou deformação de tração de valor próximo ao dos pontos centrais. As deformações de compressão continuaram pequenas, com valores semelhantes aos das vigas V2.

Nas vigas V2 e V3 apareceram fissuras de flexão, que se devem à presença das fibras. As armaduras dessas vigas foram mais solicitadas, quase atingindo o escoamento; entretanto a ruína permaneceu caracterizada por cisalhamento, havendo a formação da fissura crítica inclinada.
Na Figura 5.17 apresenta-se o gráfico da força aplicada versus o deslocamento do ponto central de todos os modelos de viga da Série 1. No gráfico da Figura 5.18, a força foi normalizada em função da raiz quadrada da resistência do concreto à compressão. Desse gráfico observa-se o ganho de resistência média proporcionado pela adição das fibras de aço ao concreto, crescente com o volume de fibras empregado.
Resultados Experimentais

Figura 5.17 – Gráfico Força x Deslocamento das vigas da Série 1

Figura 5.18 – Gráfico Força Normalizada x Deslocamento das vigas da Série 1

No gráfico da Figura 5.19 obtém-se uma melhor avaliação da ductilidade dos modelos, de modo independente das resistências ao cisalhamento alcançadas,
comparando-se as áreas sob as curvas força versus deslocamento. Observa-se que as vigas V2 e V3 tiveram aproximadamente a mesma ductilidade, ou seja, o aumento do volume de fibras de 1% para 2% em nada alterou neste caso.

![Gráfico de Força/Força de pico x Deslocamento das vigas da Série 1](image)

Figura 5.19 – Gráfico Força/Força de pico x Deslocamento das vigas da Série 1

Na Tabela 4.7 observa-se a atuação das fibras nas vigas da Série 1. Com a adição de 1% e 2% de fibras, obtiveram-se ganhos de resistência ao cisalhamento de 62,1% e 76,7%, respectivamente para as vigas V2 e V3, em relação às vigas V1.

<table>
<thead>
<tr>
<th>Viga</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vf (%)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(\frac{F_{u\text{med}}}{\sqrt{f_c}})</td>
<td>5,67</td>
<td>9,19</td>
<td>10,02</td>
</tr>
<tr>
<td>(\ell_f) (mm)</td>
<td>--</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>(\ell_c^*) (mm)</td>
<td>--</td>
<td>137</td>
<td>146</td>
</tr>
<tr>
<td>Tipo de ruptura</td>
<td>--</td>
<td>arrancamento das fibras</td>
<td>arrancamento das fibras</td>
</tr>
<tr>
<td>(V_{f\text{crit}}) (%)</td>
<td>--</td>
<td>3,1</td>
<td>3,3</td>
</tr>
</tbody>
</table>

* Aproximação através da aplicação do modelo para fibras retas (Equação 2.1)
No gráfico da Figura 5.19 observou-se um grande ganho de ductilidade das vigas V2 e V3 em relação às vigas V1, o que confere com o tipo de ruptura do compósito registrada na Tabela 4.7, ou seja, arrancamento das fibras.

Na Tabela 5.9 encontra-se a estimativa da carga de ruína das vigas com fibras (V_{fib}), com base no modelo de SWAMY et al. (1993), estudado no item 2.2 do Capítulo 2. Para a estimativa da parcela de esforço cortante proveniente da contribuição do concreto (V_c), foi utilizada a equação da FIB (1999).

<table>
<thead>
<tr>
<th>Viga</th>
<th>V_f (%)</th>
<th>τ_{fu} (MPa)</th>
<th>σ_{cu} (MPa)</th>
<th>V_{fib} (kN)</th>
<th>V_c (kN)</th>
<th>V_u (kN)</th>
<th>$V_u - V_c$ (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1A</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>13,67</td>
<td>12,43</td>
<td>14,83</td>
<td>≈ 0</td>
</tr>
<tr>
<td>V1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2A</td>
<td>1</td>
<td>2,31</td>
<td>0,52</td>
<td>4,74</td>
<td>21,83</td>
<td>23,59</td>
<td>7,91</td>
</tr>
<tr>
<td>V2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,67</td>
</tr>
<tr>
<td>V3A</td>
<td>2</td>
<td>2,17</td>
<td>0,97</td>
<td>8,90</td>
<td>27,57</td>
<td>25,53</td>
<td>12,98</td>
</tr>
<tr>
<td>V3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,94</td>
</tr>
</tbody>
</table>

Comparando o valor de V_c com os de V_u das vigas sem fibras, observa-se que a FIB (1999) fornece uma excelente previsão da carga de ruína ao cisalhamento de vigas sem fibras. A partir desta conclusão, obtém-se, na última coluna, a parcela do esforço cortante obtido experimentalmente, proveniente da contribuição das fibras. Comparando esse valor, com o obtido pelo modelo teórico de SWAMY et al. (1993), verifica-se que esse modelo não forneceu resultados satisfatórios aos ensaios da Série 1, prevendo menos do que o obtido experimentalmente.

5.1.4 Correlações entre lajes e vigas

A quantificação do ganho de resistência tanto para as vigas, como para as lajes, pode ser encontrada na Tabela 5.10, ou no gráfico da Figura 4.7.
Resultados Experimentais

Tabela 5.10 – Comparação de resistências entre lajes e vigas da Série 1

<table>
<thead>
<tr>
<th>(V_f (%))</th>
<th>Lajes</th>
<th></th>
<th>Vigas</th>
<th></th>
<th>Correlação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{P_u}{\sqrt{f_c}})</td>
<td>(\Delta P_u (%))</td>
<td>(\frac{F_{u\text{med}}}{\sqrt{f_c}})</td>
<td>(\Delta F_u (%))</td>
<td>(\Delta F_u / \Delta P_u)</td>
</tr>
<tr>
<td>0</td>
<td>28,53</td>
<td>--</td>
<td>5,67</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>28,25</td>
<td>-1,0</td>
<td>9,19</td>
<td>62,1</td>
<td>(\infty)</td>
</tr>
<tr>
<td>2</td>
<td>30,89</td>
<td>8,3</td>
<td>10,02</td>
<td>76,7</td>
<td>9,27</td>
</tr>
</tbody>
</table>

Figura 5.20 – Gráfico Resistência normalizada x Volume de fibras para lajes e vigas da S1

Pelo gráfico da Figura 4.7 percebe-se que não houve similaridade de comportamento entre as resistências das lajes e as resistências das vigas no primeiro trecho. No segundo trecho houve essa similaridade, sendo que ambas as resistências foram crescentes com o aumento do volume de fibras empregado.

Plotando em um gráfico (Figura 4.8) a resistência média normalizada das vigas versus a resistência normalizada das lajes, verifica-se que não foi possível obter uma correlação linear como aconteceu nos Ensaios Piloto S1. Conforme já tinha sido observado, a carga de ruína da laje L2 foi muito próxima à da laje L1. Isso pode ter decorrido de algum problema durante a moldagem do modelo ou a execução do ensaio, ou, ainda, do fato de ter sido feito apenas um modelo de cada laje, o resultado pode não ser representativo. Como foi visto no caso das vigas (Figura 5.18), os ensaios de elementos com fibras apresentam muita variabilidade, sendo interessante trabalhar com valores médios.
Na Figura 5.22 encontram-se os gráficos da força/força de pico versus o deslocamento/deslocamento de pico de lajes e vigas, de mesma resistência do concreto e mesmo teor de fibras. Em cada um dos gráficos observa-se que o trecho pré-pico da laje e das duas vigas é praticamente coincidente. Isso significa que lajes e vigas correspondentes apresentaram o mesmo comportamento durante o processo de microfissuração, na fase de aparecimento das primeiras fissuras de flexão. Esse comportamento curvo indica a existência de processos não lineares provavelmente decorrentes da utilização do concreto com fibras.

5.2 Modelos da Série 2

Na Série 2 foram ensaiadas três lajes de concreto, com resistência à compressão de aproximadamente 60 MPa aos 14 dias, reforçadas com fibras ZP-305 da DRAMIX, variando-se a porcentagem de fibras. Para cada laje foram moldadas duas vigas, com o mesmo concreto, conforme desenhos apresentados no Capítulo 4.
Nesta série de ensaios pretendeu-se verificar se permaneceriam as correlações existentes entre laje e viga, observadas nos Ensaios Piloto S1, alterando-se o volume de fibras e utilizando-se um concreto de alta resistência.

As características das armaduras de flexão encontram-se na Tabela 5.1, apresentada anteriormente.

5.2.1 Características dos materiais da S2

Na Tabela 5.11 apresenta-se o traço do concreto utilizado nos modelos, determinado no Capítulo 4.

Na Tabela 5.12 estão mostrados os resultados dos ensaios de caracterização do concreto utilizado nos modelos da Série 2. Percebe-se que a presença de fibras não alterou significativamente o módulo de deformação longitudinal do concreto, sendo a maior diferença em torno de 3%.

Na Tabela 5.13 apresentam-se os índices médios de tenacidade à flexão, calculados a partir dos gráficos força x deslocamento de cada prisma e efetuando-se as médias dos índices de um mesmo compósito. Os índices de tenacidade à flexão de cada prisma encontram-se no Anexo.

Comparando os índices de tenacidade à flexão da Série 1 com os das Séries 2 e 3, calculados tanto pela ASTM (C1018-94b) quanto pela JSCE-SF4/84, observa-se que, para uma mesma fibra e um mesmo teor empregado, a tenacidade é maior quando as fibras são empregadas em uma matriz de alta resistência.
Tabela 5.11 – Traço do concreto dos modelos de S2 e S3

<table>
<thead>
<tr>
<th>Traço 1:0,76:1,24:0,34</th>
<th>Consumo (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materiais</td>
<td>L4 V4A, V4B</td>
</tr>
<tr>
<td>Cimento Ribeirão</td>
<td>718,56</td>
</tr>
<tr>
<td>CP II-E-32</td>
<td>718,56</td>
</tr>
<tr>
<td>Areia</td>
<td>546,11</td>
</tr>
<tr>
<td>Pedrisco (φmax=6,3 mm)</td>
<td>891,01</td>
</tr>
<tr>
<td>Água</td>
<td>244,31</td>
</tr>
<tr>
<td>Aditivo Superplastificante</td>
<td>1%</td>
</tr>
<tr>
<td>REAX 3000 (gamma = 1,16 kg/m³)</td>
<td></td>
</tr>
<tr>
<td>Fibra ZP-305 DRAMIX</td>
<td>--</td>
</tr>
<tr>
<td>l = 30 mm</td>
<td>D = 0,55 mm</td>
</tr>
<tr>
<td>l / D = 54,5</td>
<td>f_y = 1150 MPa</td>
</tr>
</tbody>
</table>

Tabela 5.12 – Resultados dos ensaios de caracterização dos concretos utilizados em S2 e S3

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Volume de fibras (%</th>
<th>fc (MPa)</th>
<th>fct,sp (MPa)</th>
<th>fct,f (MPa)</th>
<th>fr (MPa)</th>
<th>Ec (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4 V4A, V4B V7A, V7B</td>
<td>0</td>
<td>56,98</td>
<td>3,81</td>
<td>4,09</td>
<td>--</td>
<td>28613</td>
</tr>
<tr>
<td>L5 V5A, V5B V8A, V8B</td>
<td>1</td>
<td>59,72</td>
<td>5,45</td>
<td>6,04</td>
<td>3,63</td>
<td>28395</td>
</tr>
</tbody>
</table>

f_{ct,sp}: resistência à tração por compressão diametral
f_{ct,f}: resistência à tração na flexão
f_r: resistência do compósito à primeira fissura
Tabela 5.13 – Índices médios de tenacidade à flexão dos compósitos das séries S2 e S3

<table>
<thead>
<tr>
<th>Prisma</th>
<th>Volume de fibras (%)</th>
<th>Índices de tenacidade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ASTM C1018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I5</td>
</tr>
<tr>
<td>P5</td>
<td>1</td>
<td>5,5</td>
</tr>
<tr>
<td>P6</td>
<td>2</td>
<td>6,0</td>
</tr>
</tbody>
</table>

Na Tabela 5.14 apresentam-se as previsões das cargas de ruína das lajes à punção e à flexão, e das cargas de ruína das vigas ao cisalhamento e à flexão, considerando uma resistência média de 60 MPa do concreto à compressão.

Tabela 5.14 – Previsão da carga de ruína dos modelos da Série 2

<table>
<thead>
<tr>
<th>Lajes</th>
<th>Vigas</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{pun} (kN)</td>
<td>P_{fle} (kN)</td>
</tr>
<tr>
<td>226,62</td>
<td>321,51</td>
</tr>
<tr>
<td>P_{fle} (kN)</td>
<td></td>
</tr>
<tr>
<td>39,39</td>
<td></td>
</tr>
<tr>
<td>F_{cis} (kN)</td>
<td></td>
</tr>
<tr>
<td>51,22</td>
<td></td>
</tr>
</tbody>
</table>

5.2.2 Ensaio das lajes da Série 2

O sistema de ensaio das ligações laje-pilar é o mesmo apresentado na Figura 5.5.

Na Tabela 5.15 apresentam-se alguns dados e resultados dos modelos de ligação laje-pilar da Série 2.

Tabela 5.15 – Dados e resultados das lajes da Série 2

<table>
<thead>
<tr>
<th>Modelo</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>ρ (%)</th>
<th>V_f (%)</th>
<th>$V_{f(crit)}$ (%)</th>
<th>P_r (kN)</th>
<th>P_y (kN)</th>
<th>Δ_y (mm)</th>
<th>P_u (kN)</th>
<th>Δ_u (mm)</th>
<th>θ (°)</th>
<th>ψ_u (rad)</th>
<th>$\Delta\psi_u$ $/\Delta_y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4</td>
<td>10</td>
<td>8</td>
<td>1,57</td>
<td>0</td>
<td>--</td>
<td>38,0</td>
<td>175,0</td>
<td>4,42</td>
<td>192,8</td>
<td>5,18</td>
<td>29,7</td>
<td>100,5x10^{-4}</td>
<td>1,17</td>
</tr>
<tr>
<td>L5</td>
<td>10</td>
<td>8</td>
<td>1,57</td>
<td>1</td>
<td>1,2</td>
<td>68,7</td>
<td>193,1</td>
<td>3,60</td>
<td>215,1</td>
<td>4,41</td>
<td>24,3</td>
<td>85,6x10^{-4}</td>
<td>1,22</td>
</tr>
<tr>
<td>L6</td>
<td>10</td>
<td>8</td>
<td>1,57</td>
<td>2</td>
<td>1,4</td>
<td>84,0</td>
<td>220,3</td>
<td>4,69</td>
<td>236,1</td>
<td>6,39</td>
<td>24,6</td>
<td>124x10^{-4}</td>
<td>1,36</td>
</tr>
</tbody>
</table>

P_r: carga correspondente à 1ª fissura de flexão (retirada do gráfico $P \times u$)
θ: ângulo médio da superfície de ruína em relação ao plano médio do elemento, medido experimentalmente
ψ_u: rotação última da laje
Na Figura 5.23 apresenta-se o gráfico da força aplicada versus o deslocamento do ponto central de todos os modelos de ligação laje-pilar da Série 2. No gráfico da Figura 5.24 a força foi normalizada em função da raiz quadrada da resistência do concreto à compressão. Desse gráfico observa-se o ganho de resistência proporcionado pela adição das fibras de aço ao concreto, crescente com o volume de fibras adicionado.

As lajes com fibras apresentaram maior resistência residual após atingirem a carga máxima. A resistência residual normalmente é proporcionada pelo efeito de pino da armadura de flexão, podendo ser aumentada por meio da combinação da ação de pino com o efeito de “costura” das fibras nas fissuras. O aumento da resistência residual pode controlar o escorregamento das barras da armadura de flexão, após a ruína. Segundo THEODORAKOPOULOS & SWAMY (1993), no caso das lajes com fibras isso só ocorre após as fibras terem sido arrancadas.

Figura 5.23 – Gráfico Força x Deslocamento das ligações laje-pilar da Série 2
Figura 5.24 – Gráfico *Força Normalizada x Deslocamento* das ligações laje-pilar da Série 2

No gráfico da Figura 5.25 obtém-se uma melhor avaliação da ductilidade dos modelos, de modo independente das resistências à punção alcançadas. Do gráfico observa-se o ganho de ductilidade proporcionado pela adição das fibras de aço ao concreto, também crescente com o volume de fibras adicionado.
Na Figura 5.26 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados (1 e 5) das armaduras negativas de flexão (ϕ 10mm) das lajes da Série 2. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.
Do gráfico da Figura 5.26 nota-se que, após a carga última, as deformações das armaduras de L4 diminuíram bem mais do que as das outras lajes, e não tornaram a aumentar.

As fibras aumentaram a rigidez e a resistência dos modelos em baixas deformações, devido à sua capacidade de costurar as pequenas fissuras, aumentando a quantidade de reforço.

A presença de fibras resultou numa redução significativa das tensões de tração na armadura. As cargas suportadas pelas lajes com fibras foram até 50% maiores do que a suportada pela laje sem fibras, com a mesma deformação.

Na Figura 5.27 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados (9 e 13) das armaduras positivas de flexão (ϕ 5mm) das lajes da Série 2. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

![Gráfico de Força x Deformação](image)

Figura 5.27 – Gráfico Força x Deformação das armaduras positivas de flexão das lajes da Série 2

Do gráfico da Figura 5.27 nota-se que as armaduras dos modelos com fibras estavam solicitadas à compressão até perto da carga última. Depois elas passaram a ser solicitadas à tração, devido ao efeito de membrana tracionada que acontece com a formação do cone de punção.
Para uma mesma força aplicada, as deformações das armaduras de L6 foram maiores que as de L5, que foram maiores do que as de L4, indicando a influência da presença de fibras na solicitação das armaduras de compressão.

5.2.3 Ensaio das vigas da Série 2

O sistema de ensaio das vigas da Série 2 é o mesmo apresentado na Figura 5.13, aproveitando o pórtico e o atuador usados nos ensaios das lajes. Foram colocados dois transdutores de curso 20 mm no centro da viga e foi utilizado o dispositivo “yoke”.

As vigas foram dimensionadas para romperem por cisalhamento por tração diagonal ($a/d = 3,1$).

Na Tabela 5.16 apresentam-se alguns dados e resultados dos ensaios das vigas da Série 2.

<table>
<thead>
<tr>
<th>Viga</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>b (cm)</th>
<th>ρ (%)</th>
<th>V_f (%)</th>
<th>F_r (kN)</th>
<th>$F_{r \text{ (teo)}}$ (kN)</th>
<th>F_u (kN)</th>
<th>θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V4A</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>0</td>
<td>8,5</td>
<td>9,26</td>
<td>36,26</td>
<td>34,5</td>
</tr>
<tr>
<td>V4B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,5</td>
<td>36,35</td>
<td></td>
<td>38,5</td>
</tr>
<tr>
<td>V5A</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>1</td>
<td>8,5</td>
<td>14,82</td>
<td>72,78</td>
<td>52,5</td>
</tr>
<tr>
<td>V5B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,3</td>
<td>66,60</td>
<td></td>
<td>55,0</td>
</tr>
<tr>
<td>V6A</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>2</td>
<td>11,0</td>
<td>16,42</td>
<td>57,17</td>
<td>36,5</td>
</tr>
<tr>
<td>V6B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,7</td>
<td>53,85</td>
<td></td>
<td>35,0</td>
</tr>
</tbody>
</table>

Tentou-se comparar os valores dos ângulos de inclinação das fissuras críticas (θ), encontrados na Tabela 5.16, com os valores experimentais dos ângulos das deformações principais, obtidos nas rosetas coladas no concreto, encontrados na Figura 5.28, Figura 5.29 e Figura 5.30. Nesses gráficos foram retirados os trechos iniciais, correspondentes à fase de instabilidade de leituras, devido a deformações muito pequenas no início dos ensaios. A leitura dos ângulos nos gráficos deve ser feita apenas no trecho constante das curvas, antes da fissuração do concreto. Isso significa que, nessas figuras, apenas um trecho muito pequeno das curvas pode ser utilizado para a comparação do ângulo obtido por meio das rosetas com o ângulo medido no modelo, após a ruína.
Resultados Experimentais

Figura 5.28 – Gráfico Força x Ângulo da deformação principal das vigas V4

Figura 5.29 – Gráfico Força x Ângulo da deformação principal das vigas V5
De acordo com o esperado, para a relação a/d utilizada, a ruína das vigas foi por tração diagonal. Na Figura 5.31 apresenta-se a configuração de ruína das vigas da Série 2. As fissuras de retração foram marcadas em vermelho, para não serem confundidas com as outras que apareceram durante o ensaio.

Como não havia estribos e o concreto era de alta resistência, as vigas V4 romperam de forma brusca e sem ductilidade, caracterizando claramente uma ruína por cisalhamento. Quase não apareceram fissuras visíveis de flexão nas vigas V4; a primeira fissura já foi inclinada. Apareceram algumas outras fissuras inclinadas, nos dois lados das vigas, e uma delas tornou-se crítica subindo rapidamente até o ponto de aplicação da carga.

Na viga V5A surgiram várias fissuras de flexão, e a armadura chegou a escoar no ponto de momento fletor máximo, antes da ruína. Entretanto, mesmo a armadura tendo escoado, a ruína se deu bruscamente após a instabilidade de uma fissura diagonal de cisalhamento, que se tornou crítica. A fissura crítica não se formou apenas minutos antes da ruína, ela já havia sido formada com uma carga de aproximadamente 60 kN. Depois do estrondo, a carga caiu rapidamente.

Na viga V5B, na ruína já havia algumas fissuras inclinadas de grande abertura misturadas com várias fissuras de flexão. Não foi possível detectar uma fissura inclinada crítica de cisalhamento. Considera-se, portanto, que o modo de
ruína foi um misto de cisalhamento e flexão. Na Figura 5.31 observa-se que a viga ficou bastante fletida após a retirada da carga, com uma grande deformação plástica residual.

Nas vigas V6, ao contrário do que se esperava, houve poucas fissuras de flexão e algumas fissuras inclinadas dos dois lados das vigas. Uma dessas fissuras se tornou crítica e ficou evidenciado que a ruína foi por cisalhamento, em ambas as vigas.

Na Figura 5.32 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados das vigas V4. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

Do gráfico da Figura 5.32 observa-se que os pontos 5 e 6, localizados na armadura na região de momento fletor máximo, não apresentaram deformação de
escoamento, chegando em média a 1,7‰, valor maior do que o das vigas V1, devido à maior resistência do concreto. Após a ruína, todas as deformações de tração diminuíram nas vigas V4. Em V4A, a fissura crítica apareceu do lado onde estavam localizados os pontos 1 e 2 e a roseta 1, e em V4B, do lado dos extensômetros 3 e 4 e da roseta 2. As deformações principais do concreto foram praticamente nulas. Diferentemente das vigas V1, de baixa resistência, nas vigas V4 formaram-se fissuras diagonais nos dois lados das vigas.

Na Figura 5.33 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados das vigas V5. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

Do gráfico observa-se que os pontos 5 e 6 das duas vigas, localizados na armadura, na região de momento fletor máximo, atingiram o escoamento antes da ruína delas. Após a ruína, a força se manteve constante enquanto aumentava a deformação das armaduras. Os demais pontos laterais da armadura positiva de flexão apresentaram deformação média de 2‰, bem maior do que o valor registrado nas vigas V4. As deformações principais do concreto foram praticamente nulas. As duas vigas V5 tiveram a ruína caracterizada por cisalhamento/flexão. Em V5A a fissura crítica apareceu do lado onde estavam localizados os pontos 3 e 4 e a roseta 2, e em V5B do lado dos extensômetros 1 e 2 e da roseta 1.
Na Figura 5.34 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados das vigas V6. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

Do gráfico observa-se que os pontos 5 e 6, localizados na armadura, na região de momento fletor máximo, apresentaram valor médio de 2,4‰, maior do que o registrado nas vigas V5, entretanto menor do que o valor da deformação de escoamento. Em V6A, a fissura crítica apareceu do lado onde estavam localizados os pontos 1 e 2 e da roseta 1, e em V6B, do lado dos pontos 3 e 4 e da roseta 2. As deformações principais do concreto foram praticamente nulas.
Na Figura 5.35 apresenta-se o gráfico da força aplicada versus o deslocamento do ponto central de todos os modelos de viga da Série 2. No gráfico da Figura 5.36 a força foi normalizada em função da raiz quadrada da resistência do concreto à compressão. Desse gráfico se verifica o ganho de resistência média proporcionado pela adição das fibras de aço ao concreto.
Figura 5.36 – Gráfico Força Normalizada x Deslocamento das vigas da Série 2

No gráfico da Figura 5.37 obtém-se uma melhor avaliação da ductilidade dos modelos, de modo independente das resistências ao cisalhamento alcançadas.
Um fato interessante que aconteceu nesta série de vigas foi que, aumentando o volume de fibras de 1% (V5) para 2% (V6), a carga de ruína e a ductilidade diminuíram, e a ruína passou de cisalhamento/flexão para cisalhamento. Isso será explicado posteriormente.

Na Tabela 5.17 observa-se a atuação das fibras nas vigas da Série 2. Com a adição de 1% e 2% de fibras, obtiveram-se ganhos de resistência ao cisalhamento de 87,5% e 59,5%, respectivamente para as vigas V5 e V6, em relação às vigas V4.

Observando os volumes críticos calculados, verifica-se que no caso de V6 se esperaria um maior aumento de resistência do que o que ocorreu em V5, pois o volume empregado é superior ao crítico. Supõe-se que pode ter havido um problema de trabalhabilidade da mistura, quando adicionado 2% de fibras nas vigas, uma vez que suas dimensões são reduzidas. Além disso, pode ter havido problema de efeito de escala nas vigas. Isso é ainda mais pronunciado nos compósitos com elevados teores de fibras, pois o papel das fibras é de “costurar” as fissuras e impedir sua propagação, concentrando-se em suas extremidades.

Já na laje L6 esse problema não ocorreu, sendo sua resistência maior do que a de L5. O volume crítico de L5 seria 1,2%, próximo ao utilizado, que foi 1%. Em L6 foram adicionados 2% de fibras, volume superior ao crítico, que seria de
1,4%. Portanto, nas duas lajes se esperaria aumento de resistência à punção, como de fato ocorreu.

Tabela 5.17 – Atuação das fibras nos compósitos das vigas da Série 2

<table>
<thead>
<tr>
<th>Viga</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_f (%)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$F_{u\text{med}} / F_c$</td>
<td>4,81</td>
<td>9,02</td>
<td>7,67</td>
</tr>
<tr>
<td>ℓ_i (mm)</td>
<td>--</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>ℓ_c^* (mm)</td>
<td>--</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>Tipo de ruptura</td>
<td>--</td>
<td>arrancamento das fibras</td>
<td>arrancamento das fibras</td>
</tr>
<tr>
<td>$V_{f\text{crit}}$ (%)</td>
<td>--</td>
<td>1,5</td>
<td>1,8</td>
</tr>
</tbody>
</table>

* Aproximação através da aplicação do modelo para fibras retas (Equação 2.1)

Na Tabela 5.18 encontra-se a estimativa da carga de ruína das vigas com fibras (V_{fib}), com base no modelo de SWAMY et al. (1993), estudado no item 2.2 do Capítulo 2. Para a estimativa da parcela de esforço cortante proveniente da contribuição do concreto (V_c), foi utilizada a equação da FIB (1999).

Tabela 5.18 – Aplicação do modelo teórico às vigas da Série 2

<table>
<thead>
<tr>
<th>Viga</th>
<th>Vf (%)</th>
<th>τ_{fu} (MPa)</th>
<th>σ_{cu} (MPa)</th>
<th>V_{fib} (kN)</th>
<th>V_c (kN)</th>
<th>V_u (kN)</th>
<th>$V_u - V_c$ (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V4A</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>18,47</td>
<td>18,13</td>
<td>18,18</td>
<td>≈ 0</td>
</tr>
<tr>
<td>V4B</td>
<td>1</td>
<td>8,24</td>
<td>1,84</td>
<td>16,90</td>
<td>18,76</td>
<td>36,39</td>
<td>17,63</td>
</tr>
<tr>
<td>V5A</td>
<td>1</td>
<td>8,24</td>
<td>1,84</td>
<td>16,90</td>
<td>18,76</td>
<td>36,39</td>
<td>17,63</td>
</tr>
<tr>
<td>V5B</td>
<td>2</td>
<td>6,94</td>
<td>3,10</td>
<td>28,48</td>
<td>17,96</td>
<td>28,59</td>
<td>10,63</td>
</tr>
<tr>
<td>V6A</td>
<td>2</td>
<td>6,94</td>
<td>3,10</td>
<td>28,48</td>
<td>17,96</td>
<td>28,59</td>
<td>10,63</td>
</tr>
<tr>
<td>V6B</td>
<td>2</td>
<td>6,94</td>
<td>3,10</td>
<td>28,48</td>
<td>17,96</td>
<td>28,59</td>
<td>10,63</td>
</tr>
</tbody>
</table>

Na última coluna da Tabela 5.18, tem-se a parcela do esforço cortante obtido experimentalmente, proveniente da contribuição das fibras. Comparando esse valor, com o obtido pelo modelo teórico de SWAMY et al. (1993), verifica-se que esse modelo se aplicou muito bem às vigas V5A e V5B, porém não se aplicou bem às vigas V6A e V6B, cujos resultados experimentais de carga de ruína são considerados suspeitos.
5.3 Modelos da Série 3

5.3.1 Ensaios das vigas da Série 3

Na Série 3 foram ensaiadas vigas de altura maior que as da Série 2, de concreto com resistência à compressão de aproximadamente 60 MPa aos 14 dias, reforçadas com fibras ZP-305 da DRAMIX, utilizando-se a mesma porcentagem de fibras da Série 2. O detalhamento das vigas foi apresentado no Capítulo 4.

Nesta série pretendeu-se verificar se a mudança da altura útil das vigas, em relação à altura útil das vigas e lajes da Série 2, altera a correlação existente entre laje e viga detectada nos ensaios-piloto.

As características das armaduras de flexão encontram-se na Tabela 5.1 e o traço do concreto na Tabela 5.11, apresentadas anteriormente.

Na Tabela 5.12 foram mostrados os resultados dos ensaios de caracterização do concreto utilizado nos modelos das séries 2 e 3.

Na Tabela 5.13 foram mostrados os resultados dos ensaios de tenacidade dos compósitos utilizados nos modelos das séries 2 e 3.

Na Tabela 4.5 apresentam-se as previsões das cargas de ruína ao cisalhamento e à flexão das vigas, considerando uma resistência média de 60 MPa do concreto à compressão.

Tabela 5.19 – Previsão da carga de ruína das vigas da Série 3

<table>
<thead>
<tr>
<th>F_{cis} (kN)</th>
<th>F_{fle} (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>77,82</td>
<td>98,82</td>
</tr>
</tbody>
</table>

O sistema de ensaio das vigas da Série 3 encontra-se apresentado na Figura 5.38, aproveitando o pórtico e o atuador usados nos ensaios das lajes. Foram colocados dois transdutores de curso 10 mm nos apoios e um transdutor de curso 100 mm para medir o deslocamento do centro da viga.

As vigas foram dimensionadas para romperem por cisalhamento por tração diagonal ($a/d = 3,3$).
Na Tabela 5.20 apresentam-se alguns dados e resultados dos ensaios das vigas da Série 3.

<table>
<thead>
<tr>
<th>Viga</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>b (cm)</th>
<th>ρ (%)</th>
<th>Vf (%)</th>
<th>Fr (kN)</th>
<th>Fr (teo) (kN)</th>
<th>Fu (kN)</th>
<th>θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V7A</td>
<td>17</td>
<td>15,5</td>
<td>13</td>
<td>1,59</td>
<td>0</td>
<td>20,5</td>
<td>14,92</td>
<td>54,82</td>
<td>24,5</td>
</tr>
<tr>
<td>V7B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27,0</td>
<td>46,44</td>
<td></td>
<td>35,5</td>
</tr>
<tr>
<td>V8A</td>
<td>17</td>
<td>15,5</td>
<td>13</td>
<td>1,59</td>
<td>1</td>
<td>21,5</td>
<td>22,03</td>
<td>68,32</td>
<td>40,0</td>
</tr>
<tr>
<td>V8B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20,8</td>
<td>80,06</td>
<td></td>
<td>36,0</td>
</tr>
<tr>
<td>V9A</td>
<td>17</td>
<td>15,5</td>
<td>13</td>
<td>1,59</td>
<td>2</td>
<td>37,3</td>
<td>37,5</td>
<td>81,17</td>
<td>32,5</td>
</tr>
<tr>
<td>V9B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37,5</td>
<td>104,93</td>
<td></td>
<td>30,0</td>
</tr>
</tbody>
</table>

Tentou-se comparar os valores dos ângulos de inclinação das fissuras críticas (θ), encontrados na Tabela 5.20, com os valores experimentais dos ângulos das deformações principais obtidos nas rosetas coladas no concreto, encontrados na Figura 5.39, Figura 5.40 e Figura 5.41. Novamente é importante ressaltar que os valores dessas medições só podem ser aproveitados antes da fissuração do concreto.
Resultados Experimentais

Figura 5.39 – Gráfico *Força x Ângulo da deformação principal* das vigas V7

Figura 5.40 – Gráfico *Força x Ângulo da deformação principal* das vigas V8
De acordo com o esperado, para a relação \(a/d \) utilizada, a ruína das vigas foi por tracção diagonal. Na Figura 5.42 apresenta-se a configuração de ruína das vigas da Série 3. As fissuras de retração foram marcadas em vermelho, para não serem confundidas com as outras que apareceram durante o ensaio.

Nas vigas V7 inicialmente surgiram fissuras de flexão no meio do vão, sendo que a primeira fissura visível de flexão foi com uma carga de aproximadamente 20 kN. A fissura crítica de cisalhamento não se originou de nenhuma fissura de flexão; em V7A ela apareceu repentinamente, com uma carga de aproximadamente 55 kN, e logo a seguir a viga rompeu.

O comportamento das vigas V8A, V8B e V9A durante o ensaio foi muito semelhante ao das vigas V7, sendo a carga de ruína maior, devido à adição de fibras de aço. Nessas vigas surgiram fissuras inclinadas próximas aos apoios em apenas um dos lados das peças, sendo que essas fissuras únicas se tornaram críticas para o cisalhamento.

Na viga V9B, com 2% de fibras, formaram-se fissuras inclinadas nos dois lados das vigas. A ruína foi por cisalhamento/flexão, pois a armadura de flexão escoou no ponto mais solicitado, apesar da ruptura ter sido por instabilidade de uma fissura diagonal de cisalhamento, que se tornou crítica.
Na Figura 5.43 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados das vigas V7. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

Do gráfico da Figura 5.43, observa-se que os pontos 1 a 4, localizados na armadura, na região de momento fletor máximo, não apresentaram deformação de escoamento, chegando em média a 1,5‰. Após a ruína, todas as deformações de tração desses pontos diminuíram. Nas vigas V7A e V7B, as fissuras críticas apareceram do lado onde estavam localizados os extensômetros 6 e 8 e a roseta 2.
As deformações principais, obtidas com as rosetas coladas no concreto, foram praticamente nulas.

Figura 5.43 – Gráfico Força x Deformação das vigas V7

Na Figura 5.44 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados das vigas V8. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

Do gráfico observa-se que os pontos 1 a 4, localizados na armadura na região de momento fletor máximo, não apresentaram deformação de escoamento, chegando em média a 1,5%. Os demais pontos laterais da armadura de flexão positiva apresentaram deformação maior do que o registrado nas vigas V7. As deformações principais do concreto foram praticamente nulas. Em V8A, no final do ensaio, a fissura crítica passou por baixo do extensômetro 11 da roseta 1.
Na Figura 5.45 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados das vigas V9. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

Do gráfico observa-se que os pontos 1 a 4 de V9B, localizados na armadura na região de momento fletor máximo, atingiram a deformação de escoamento no instante da ruína. Os demais pontos laterais da armadura positiva de flexão apresentaram deformação maior do que a registrada nas vigas V8. As deformações principais do concreto foram praticamente nulas. Em V9A, no final do ensaio, a fissura crítica passou por baixo do extensômetro 9 da roseta 1. Na viga V9A, a fissura crítica apareceu do lado onde estavam localizados os extensômetros 5 e 7 e a roseta 1. Na viga V9B, a fissura crítica apareceu do lado onde estavam localizados os extensômetros 6 e 8 e a roseta 2.
Na Figura 5.46 apresenta-se o gráfico da força aplicada versus o deslocamento do ponto central de todos os modelos de viga da Série 3. No gráfico da Figura 5.47 a força foi normalizada em função da raiz quadrada da resistência do concreto à compressão. Desse gráfico observa-se o ganho de resistência média proporcionado pela adição das fibras de aço ao concreto, crescente com o volume de fibras empregado.
No gráfico da Figura 5.48 obtém-se uma melhor avaliação da ductilidade dos modelos, de modo independente das resistências ao cisalhamento alcançadas. Do gráfico observa-se o ganho de ductilidade proporcionado pela adição das fibras de aço ao concreto, também crescente com o volume de fibras adicionado.
Na Tabela 5.21 observa-se a atuação das fibras nas vigas da Série 3. Com a adição de 1% e 2% de fibras, obtiveram-se ganhos médios de resistência de 43,1% e 91,5%, respectivamente para as vigas V8 e V9, em relação às vigas V7.

Observando os volumes críticos calculados, verifica-se que no caso de V9 se esperaria um maior aumento de resistência do que em V8, o que realmente ocorreu, pois o volume empregado é maior do que o crítico. Nesse caso, ao contrário do que provavelmente aconteceu nas vigas da Série 2, não deve ter havido problema de trabalhabilidade da mistura na forma, devido às suas maiores dimensões.
Tabela 5.21 – Atuação das fibras nos compósitos das vigas da Série 3

<table>
<thead>
<tr>
<th>Viga</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vf (%)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$F_{u_{(med)}}/\sqrt{f_c}$</td>
<td>6,71</td>
<td>9,60</td>
<td>12,85</td>
</tr>
<tr>
<td>l_f (mm)</td>
<td>--</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>l_{c^*} (mm)</td>
<td>--</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>Tipo de ruptura</td>
<td>--</td>
<td>arrancamento das fibras</td>
<td>arrancamento das fibras</td>
</tr>
<tr>
<td>$V_{f_{(crit)}}$ (%)</td>
<td>--</td>
<td>1,5</td>
<td>1,8</td>
</tr>
</tbody>
</table>

* Aproximação através da aplicação do modelo para fibras retas (Equação 2.1)

Na Tabela 5.22 encontra-se a estimativa da carga de ruína das vigas com fibras (V_{fib}), com base no modelo de SWAMY et al. (1993), estudado no item 2.2 do Capítulo 2. Para a estimativa da parcela de esforço cortante proveniente da contribuição do concreto (V_c), foi utilizada a média das cargas de ruína das vigas V7, pois as equações normativas forneceram valores muito altos.

Tabela 5.22 – Aplicação do modelo teórico às vigas da Série 3

<table>
<thead>
<tr>
<th>Viga</th>
<th>Vf (%)</th>
<th>τ_u (MPa)</th>
<th>σ_{cu} (MPa)</th>
<th>V_{fib} (kN)</th>
<th>V_c (kN)</th>
<th>V_u (kN)</th>
<th>$V_u - V_c$ (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V7A</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>25,32</td>
<td>27,41</td>
<td>2,11</td>
</tr>
<tr>
<td>V7B</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>25,32</td>
<td>23,22</td>
<td>--</td>
</tr>
<tr>
<td>V8A</td>
<td>1</td>
<td>8,24</td>
<td>1,84</td>
<td>33,40</td>
<td>25,32</td>
<td>34,16</td>
<td>8,84</td>
</tr>
<tr>
<td>V8B</td>
<td>0</td>
<td>1,84</td>
<td>8,24</td>
<td>33,40</td>
<td>25,32</td>
<td>40,03</td>
<td>14,71</td>
</tr>
<tr>
<td>V9A</td>
<td>2</td>
<td>6,94</td>
<td>3,10</td>
<td>56,25</td>
<td>25,32</td>
<td>40,59</td>
<td>15,27</td>
</tr>
<tr>
<td>V9B</td>
<td>0</td>
<td>3,10</td>
<td>6,94</td>
<td>56,25</td>
<td>25,32</td>
<td>52,47</td>
<td>17,15</td>
</tr>
</tbody>
</table>

Na última coluna da Tabela 5.22, tem-se a parcela do esforço cortante obtido experimentalmente, proveniente da contribuição das fibras. Comparando esse valor, com o obtido pelo modelo teórico de SWAMY et al. (1993), verifica-se que esse modelo não forneceu resultados satisfatórios aos ensaios da Série 3, prevendo mais do que o obtido experimentalmente.
5.3.2 Correlações entre lajes e vigas das Séries 2 e 3

A quantificação do ganho de resistência, tanto para as vigas como para as lajes, pode ser encontrada na Tabela 5.23 ou no gráfico da Figura 5.49.

Tabela 5.23 – Comparação de resistências entre lajes e vigas das séries S2 e S3

<table>
<thead>
<tr>
<th>(V_f) (%)</th>
<th>Lajes S2</th>
<th>Vigas S2</th>
<th>Vigas S3</th>
<th>Correlação</th>
<th>Correlação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{P_u}{\sqrt{f_c}}) (%)</td>
<td>(\frac{\Delta P_u}{\sqrt{f_c}}) (%)</td>
<td>(\frac{F_{u\text{,med}}}{\sqrt{f_c}}) (%)</td>
<td>(\frac{\Delta F_{u\text{,med}}}{\sqrt{f_c}}) (%)</td>
<td>(\frac{\Delta F_u(S2)}{\Delta P_u(S2)})</td>
</tr>
<tr>
<td>0</td>
<td>25,55</td>
<td>--</td>
<td>4,81</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>27,84</td>
<td>9,0</td>
<td>9,02</td>
<td>87,5</td>
<td>9,60</td>
</tr>
<tr>
<td>2</td>
<td>32,63</td>
<td>27,7</td>
<td>7,67</td>
<td>59,5</td>
<td>12,85</td>
</tr>
</tbody>
</table>

Figura 5.49 – Gráfico Resistência normalizada x Volume de fibras para lajes e vigas de S2 e S3

Pelo gráfico da Figura 5.49, percebe-se uma similaridade de comportamento entre as resistências das lajes e as resistências das vigas da S3, sendo ambas crescentes com o aumento do volume de fibras adicionado. Plotando em um gráfico (Figura 5.50) a resistência média normalizada das vigas da S3 versus a resistência normalizada das lajes da S2, verifica-se que a linha de tendência é do tipo linear. A mesma correlação não pode ser observada entre lajes e vigas da S2. A não
existência da mesma similaridade de comportamento entre as resistências dos elementos da Série 2 foi discutida anteriormente.

\[y = 1,1597x + 17,401 \]
\[R^2 = 0,9723 \]

Figura 5.50 – Gráfico Resistência normalizada das lajes x Resistência média normalizada das vigas da Série 3

Na Figura 5.51 encontram-se os gráficos da força/de força de pico versus o deslocamento/deslocamento de pico de lajes e vigas, de mesma resistência do concreto e mesmo teor de fibras. Em cada um dos gráficos observa-se que o trecho pré-pico da laje e das duas vigas é praticamente coincidente. Isso aconteceu correlacionando as lajes da Série 2, tanto com as vigas da Série 2 como com as vigas da Série 3.

Figura 5.51 – Gráficos Força/Força de pico x Deslocamento/Deslocamento de pico de S2 e S3
5.4 Modelos da Série 4

Na Série 4 foram ensaiadas duas lajes de concreto com resistência à compressão de aproximadamente 40 MPa aos 14 dias, reforçadas com fibras RL 45/50 BN da DRAMIX, variando-se a porcentagem de fibras. Para cada laje foram moldadas duas vigas pequenas com o mesmo concreto, conforme desenhos apresentados no Capítulo 4.

Nesta série pretendeu-se verificar se a mudança do comprimento e da relação de aspecto das fibras, em relação àquelas utilizadas por AZEVEDO (1999), altera a correlação entre laje e viga, detectada nos ensaios piloto.

5.4.1 Características dos materiais da S4

As características das armaduras de flexão encontram-se na Tabela 5.1 apresentada anteriormente. Na Tabela 5.24 apresenta-se o traço do concreto utilizado nos modelos, o mesmo utilizado por AZEVEDO (1999).

Como parâmetros de referência em concreto sem fibras, utilizou-se a laje OSC.S1 de AZEVEDO (1999) e as vigas piloto VP1A e VP1B, cujas características encontram-se descritas no item 4.1 do Capítulo 4.
Tabela 5.24 – Traço do concreto dos modelos da Série 4

<table>
<thead>
<tr>
<th>Traço 1:1,8:2,5:0,5</th>
<th>Consumo (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materiais</td>
<td>L7</td>
</tr>
<tr>
<td>Cimento Ribeirão CP II-E-32</td>
<td>423,15</td>
</tr>
<tr>
<td>Areia</td>
<td>760,56</td>
</tr>
<tr>
<td>Brita 1 (φmax=19 mm)</td>
<td>1056,30</td>
</tr>
<tr>
<td>Água</td>
<td>211,30</td>
</tr>
<tr>
<td>Aditivo Superplastificante</td>
<td></td>
</tr>
<tr>
<td>REAX 3000 (γ = 1,16 kg/m³)</td>
<td>0,5%</td>
</tr>
<tr>
<td>Fibra RL 45/50 BN DRAMIX</td>
<td></td>
</tr>
<tr>
<td>l = 50 mm</td>
<td></td>
</tr>
<tr>
<td>D = 1,05 mm</td>
<td></td>
</tr>
<tr>
<td>l / D = 48</td>
<td></td>
</tr>
<tr>
<td>fy = 1000 MPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59,85</td>
</tr>
</tbody>
</table>

Na Tabela 5.25 estão mostrados os resultados dos ensaios de caracterização do concreto utilizado nos modelos da Série 4.

Tabela 5.25 – Resultados dos ensaios de caracterização dos concretos utilizados na S4

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Volume de fibras (%)</th>
<th>fc (MPa)</th>
<th>fct,sp (MPa)</th>
<th>fct,f (MPa)</th>
<th>fr (MPa)</th>
<th>Ec (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSC:S1</td>
<td>0</td>
<td>43,73</td>
<td>3,76</td>
<td>--</td>
<td>--</td>
<td>30470</td>
</tr>
<tr>
<td>VP1A,VP1B</td>
<td>0,75</td>
<td>36,08</td>
<td>3,42</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>L7</td>
<td>1,50</td>
<td>46,08</td>
<td>5,17</td>
<td>6,82</td>
<td>3,90</td>
<td>31385</td>
</tr>
</tbody>
</table>

fct,sp: resistência à tração por compressão diametral
fct,f: resistência à tração na flexão
fr: resistência do compósito à primeira fissura
Na Tabela 5.26 apresentam-se os índices médios de tenacidade à flexão, calculados a partir dos gráficos força x deslocamento de cada prisma e efetuando-se as médias dos índices de um mesmo compósito. Os índices de tenacidade à flexão de cada prisma encontram-se no Anexo.

Tabela 5.26 – Índices médios de tenacidade à flexão dos compósitos da Série 4

<table>
<thead>
<tr>
<th>Prisma</th>
<th>Volume de fibras (%)</th>
<th>Índices de tenacidade</th>
<th>ASTM C1018</th>
<th>JSCE-SF4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I5</td>
<td>I10</td>
<td>I20</td>
</tr>
<tr>
<td>P7</td>
<td>0,75</td>
<td>5,5</td>
<td>11,6</td>
<td>23,5</td>
</tr>
<tr>
<td>P8</td>
<td>1,50</td>
<td>5,6</td>
<td>12,1</td>
<td>25,9</td>
</tr>
</tbody>
</table>

Na Tabela 5.27 apresentam-se as previsões das cargas de ruína das lajes à punção e à flexão, e das cargas de ruína das vigas ao cisalhamento e à flexão, considerando uma resistência média de 40 MPa do concreto à compressão.

Tabela 5.27 – Previsão da carga de ruína dos modelos da Série 4

<table>
<thead>
<tr>
<th>Lajes</th>
<th>Vigas</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{pun} (kN)</td>
<td>P_{fle} (kN)</td>
</tr>
<tr>
<td>197,97</td>
<td>309,08</td>
</tr>
</tbody>
</table>

5.4.2 Ensaio das lajes da Série 4

O sistema de ensaio das ligações laje-pilar é o mesmo apresentado na Figura 5.5.

Na Tabela 5.28 apresentam-se alguns dados e resultados dos modelos de ligação laje-pilar da Série 4.
Tabela 5.28 – Dados e resultados das lajes da Série 4

<table>
<thead>
<tr>
<th>Modelo</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>ρ (%)</th>
<th>V_f (%)</th>
<th>$V_{f\text{crit}}$ (%)</th>
<th>P_r (kN)</th>
<th>P_y (kN)</th>
<th>Δ_y (mm)</th>
<th>P_u (kN)</th>
<th>Δ_u (mm)</th>
<th>θ (°)</th>
<th>ψ_u (rad)</th>
<th>Δ_u/Δ_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSC.S1</td>
<td>10</td>
<td>8</td>
<td>1,57</td>
<td>0</td>
<td>--</td>
<td>56,2</td>
<td>176,0 6</td>
<td>3,28</td>
<td>3,34</td>
<td>23,7</td>
<td>65,2x10^{-4}</td>
<td>1,02</td>
<td></td>
</tr>
<tr>
<td>L7</td>
<td>10</td>
<td>8</td>
<td>1,57</td>
<td>0,75</td>
<td>2,4</td>
<td>77,3</td>
<td>173,3 1</td>
<td>4,31</td>
<td>4,83</td>
<td>19,9</td>
<td>93x10^{-4}</td>
<td>1,12</td>
<td></td>
</tr>
<tr>
<td>L8</td>
<td>10</td>
<td>8</td>
<td>1,57</td>
<td>1,50</td>
<td>1,5</td>
<td>83,9</td>
<td>200,9 0</td>
<td>4,13</td>
<td>4,88</td>
<td>23,8</td>
<td>92,9x10^{-4}</td>
<td>1,18</td>
<td></td>
</tr>
</tbody>
</table>

P_r: carga correspondente à 1ª fissura de flexão (retirada do gráfico $P \times u$)

θ: ângulo médio da superfície de ruína em relação ao plano médio do elemento, medido experimentalmente

ψ_u: rotação última da laje

Na Figura 5.52 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados (1 e 5) das armaduras negativas de flexão (ϕ 10mm) das lajes da Série 4. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

![Figura 5.52 – Gráfico Força x Deformação das armaduras negativas de flexão das lajes da Série 4](attachment:image.png)

Do gráfico da Figura 5.52 nota-se que na fase pré-pico, nos três modelos, nenhum ponto instrumentado das armaduras escoou. Os extensômetros de número 1, localizados no ponto possivelmente mais tracionado, apresentaram deformações de ruína de valores 2,45‰, 2,28‰ e 1,96‰, nas lajes L8, L7 e OSC.S1
respectivamente. Após a carga última, nas três lajes, as deformações das armaduras diminuíram enquanto a carga caía, sendo que também nenhum ponto atingiu o escoamento na fase de descarregamento.

Na Figura 5.53 apresenta-se o gráfico da **força aplicada** versus a **deformação** média dos pontos mais solicitados (9 e 13) das armaduras positivas de flexão (φ 5mm) das lajes da Série 4. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

Do gráfico da Figura 5.53, nota-se que a maioria das armaduras dos três modelos estavam solicitadas à compressão até eles atingirem a carga última. Depois elas passaram a ser solicitadas à tração, devido ao efeito de membrana tracionada que acontece com a formação do cone de punção.

5.4.3 Análise comparativa: lajes Série 4 x lajes AZEVEDO (1999)

Na Tabela 5.29 apresentam-se as deformações últimas de tração dos pontos 1 e 5, situados na região de momento fletor máximo, das lajes da Série 4 e das lajes de AZEVEDO (1999). Aparentemente, a diminuição da relação de aspecto das fibras de aço nas lajes da Série 4 provocou aumento das deformações últimas...
de tração dos pontos mais solicitados das armaduras. Nenhum desses pontos instrumentados apresentou deformação igual ao superior à de escoamento do aço.

Tabela 5.29 – Dados e resultados das lajes analisadas

<table>
<thead>
<tr>
<th>Laje</th>
<th>f_c (MPa)</th>
<th>V_f (%)</th>
<th>Tipo de fibra</th>
<th>t/D (mm)</th>
<th>Def$_{(teg)}$ (mm/m)</th>
<th>P_u (kN)</th>
<th>$P_u/\sqrt{f_c}$</th>
<th>Aumento de resistência</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSC.S1</td>
<td>43,73</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>1,96</td>
<td>176,4</td>
<td>26,69</td>
<td>--</td>
</tr>
<tr>
<td>OSC.S2</td>
<td>46,42</td>
<td>0,75</td>
<td>RC 65/30 BN</td>
<td>66,7</td>
<td>2,14</td>
<td>191,9</td>
<td>28,17</td>
<td>5,5%</td>
</tr>
<tr>
<td>L7</td>
<td>36,55</td>
<td>0,75</td>
<td>RL 45/50 BN</td>
<td>48</td>
<td>2,28</td>
<td>182,8</td>
<td>30,24</td>
<td>13,3%</td>
</tr>
<tr>
<td>OSC.S3</td>
<td>30,80</td>
<td>1,50</td>
<td>RC 65/30 BN</td>
<td>66,7</td>
<td>2,01</td>
<td>197,6</td>
<td>35,61</td>
<td>33,4%</td>
</tr>
<tr>
<td>L8</td>
<td>46,08</td>
<td>1,50</td>
<td>RL 45/50 BN</td>
<td>48</td>
<td>2,45</td>
<td>210,9</td>
<td>31,07</td>
<td>16,4%</td>
</tr>
</tbody>
</table>

Na última coluna da Tabela 5.29 tem-se o aumento da resistência à punção das lajes com fibras em relação à laje sem fibras OSC.S1. Verifica-se que a diminuição da relação de aspecto das fibras fez com que a resistência à punção da laje L7, com 0,75% de fibras, fosse 7,8% maior do que a da laje OSC.S2, com a mesma porcentagem de fibras. Entretanto, nas lajes com 1,5% de fibras, a diminuição da relação de aspecto fez com que a resistência à punção da laje de menor relação de aspecto fosse 17% menor do que a da laje de maior relação de aspecto. Consideram-se muito pequenas essas diferenças de resistência à punção entre as lajes de concreto reforçado com o mesmo teor de fibras. Portanto, pode-se dizer que a mudança da relação de aspecto não alterou significativamente as resistências das lajes à punção.

Na Figura 5.54 apresenta-se o gráfico da *força aplicada* versus o *deslocamento do ponto central* de todos os modelos de laje analisados. No gráfico da Figura 5.55 a força foi normalizada em função da raiz quadrada da resistência do concreto à compressão. Nesse gráfico comprova-se que a alteração da relação de aspecto das fibras pouco alterou a resistência à punção, quando comparadas as lajes OSC.S2 com a L7, e a OSC.S3 com a L8.
Figura 5.54 – Gráfico Força x Deslocamento das lajes analisadas

Figura 5.55 – Gráfico Força Normalizada x Deslocamento das lajes analisadas
No gráfico da Figura 5.56 obtém-se uma melhor avaliação da ductilidade dos modelos, de modo independente das resistências à punção alcançadas. Do gráfico observa-se que as lajes L7 e L8 apresentaram praticamente a mesma ductilidade, ou seja, dobrando o teor de fibras de 0,75% para 1,5%, de nada adiantou nesse aspecto. Além disso, as lajes OSC.S2 e OSC.S3, reforçadas com fibras de maior relação de aspecto ($l/D \approx 66,7$), apresentaram maior ductilidade do que as lajes L7 e L8 (Série 4), reforçadas com fibras de maior comprimento, porém menor relação de aspecto ($l/D = 48$).

![Gráfico Força/Força de pico x Deslocamento das lajes analisadas](image)

Figura 5.56 – Gráfico Força/Força de pico x Deslocamento das lajes analisadas

5.4.4 Ensaios das vigas da Série 4

O sistema de ensaio das vigas da Série 4 é o mesmo apresentado na Figura 5.13, aproveitando o pórtico e o atuador usados nos ensaios das lajes. Foram colocados dois transdutores de curso 20 mm no centro da viga e foi utilizado o dispositivo “yoke”.

As vigas foram dimensionadas para romperem por cisalhamento por tração diagonal ($a/d = 3,1$).

Na Tabela 5.30 apresentam-se alguns dados e resultados dos ensaios das vigas da Série 4.
Tabela 5.30 – Dados e resultados das vigas da Série 4

<table>
<thead>
<tr>
<th>Viga</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>b (cm)</th>
<th>ρ (%)</th>
<th>Vf (%)</th>
<th>Fr (kN)</th>
<th>Fr (teo) (kN)</th>
<th>Fu (kN)</th>
<th>θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V10A</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>0,75</td>
<td>11,4</td>
<td>9,62</td>
<td>42,71</td>
<td>27,5</td>
</tr>
<tr>
<td>V10B</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>1,50</td>
<td>11,4</td>
<td>38,99</td>
<td>61,79</td>
<td>28,5</td>
</tr>
<tr>
<td>V11A</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>1,50</td>
<td>15,5</td>
<td>15,44</td>
<td>49,99</td>
<td>37,5</td>
</tr>
<tr>
<td>V11B</td>
<td>10</td>
<td>8,5</td>
<td>12</td>
<td>1,57</td>
<td>1,50</td>
<td>14,0</td>
<td>61,79</td>
<td>42,5</td>
<td></td>
</tr>
</tbody>
</table>

De acordo com o esperado, para a relação a/d utilizada, a ruína das vigas foi por tração diagonal. Na Figura 5.57 apresenta-se a configuração de ruína das vigas da Série 4.

Nas vigas V10 a ruína se deu após a instabilidade da fissura diagonal de cisalhamento, que se tornou crítica. Na viga V10A surgiram fissuras inclinadas nos dois lados da viga, e antes da ruína, percebeu-se o ruído do arrancamento das fibras. Após a carga última a carga caiu devagar nas duas vigas. Não apareceram fissuras visíveis de flexão, e a armadura não chegou a escoar, antes da ruína. A ruína pode ser caracterizada por cisalhamento.

Nas vigas V11 a ruína se deu após a instabilidade de uma fissura diagonal de cisalhamento, que se tornou crítica. Além dessa, surgiram outras fissuras diagonais nas vigas. Após a carga última a carga caiu devagar nas duas vigas. Não apareceram fissuras visíveis de flexão.

Em V11A a armadura não chegou a escoar, antes da ruína. A ruína de V11A pode ser caracterizada por cisalhamento. Em V11B a armadura escoou na região de momento fletor máximo, antes da ruína. Apesar disso, houve o aparecimento da fissura crítica de cisalhamento. Considera-se, portanto, que a ruína foi um misto de cisalhamento e flexão. Na Figura 5.57 observa-se que a viga V11B ficou bastante fletida após retirada a carga, com uma grande deformação plástica residual.
Na Figura 5.57 apresenta-se a configuração de ruína das vigas da Série 4 na Figura 5.58 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados das vigas V10. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

O gráfico observa-se que os pontos 5 e 6 das duas vigas, localizados na armadura na região de momento fletor máximo, não apresentaram deformação de escoamento, chegando em média a 1,8%. Os demais pontos laterais da armadura positiva de flexão apresentaram deformação média de valor próximo à dos pontos centrais. Em V10A a fissura crítica apareceu do lado onde estavam localizados os pontos 3 e 4 e a roseta 1, e em V10B, do lado dos pontos 1 e 2 e da roseta 2.
Na Figura 5.59 apresenta-se o gráfico da força aplicada versus a deformação média dos pontos mais solicitados das vigas V11. Os gráficos dos demais pontos instrumentados encontram-se no Anexo.

Do gráfico observa-se que os pontos 5 e 6, localizados na armadura, na região de momento fletor máximo, apresentaram valor médio de 2,2‰, maior do que o registrado nas vigas V10. Apenas o ponto 5 da viga V11B apresentou deformação de valor igual ao da deformação de escoamento do aço.

Em V11A a fissura crítica apareceu do lado onde estavam localizados os pontos 3 e 4 e a roseta 2, e em V11B, do lado dos pontos 1 e 2 e da roseta 1. As deformações de tração nas armaduras diminuíram enquanto a carga caía, da mesma forma que nas vigas V10.
Na Tabela 5.31 observa-se a atuação das fibras nas vigas da Série 4. Com a adição de 0,75% e 1,5% de fibras, obtiveram-se ganhos de resistência ao cisalhamento de 43,2% e 68,0%, respectivamente para as vigas V10 e V11, em relação às vigas VP1. O aumento de resistência de V11 em relação a VP1 foi maior do que o de V10 em relação a VP1. Isso pode ser explicado porque em V11 o volume de fibras adicionado foi maior do que o crítico, o que não aconteceu em V10. Esse elevado volume de fibras fez também com que a ruína de uma das vigas passasse de cisalhamento para cisalhamento/flexão.
Tabela 5.31 – Atuação das fibras nos compósitos das vigas da Série 4

<table>
<thead>
<tr>
<th>Viga</th>
<th>VP1</th>
<th>V10</th>
<th>V11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vf (%)</td>
<td>0.0</td>
<td>0.75</td>
<td>1.50</td>
</tr>
<tr>
<td>$F_{u\text{(med)}}/\sqrt{f_c}$</td>
<td>4.61</td>
<td>6.76</td>
<td>8.23</td>
</tr>
<tr>
<td>ℓ_f (mm)</td>
<td>--</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>ℓ_c^* (mm)</td>
<td>--</td>
<td>123</td>
<td>78</td>
</tr>
<tr>
<td>Tipo de ruptura</td>
<td>--</td>
<td>arrancamento das fibras</td>
<td>arrancamento das fibras</td>
</tr>
<tr>
<td>$V_f(\text{crit})$ (%)</td>
<td>--</td>
<td>3.0</td>
<td>1.9</td>
</tr>
</tbody>
</table>

* Aproximação através da aplicação do modelo para fibras retas (Equação 2.1)

Na Tabela 5.32 encontra-se a estimativa da carga de ruína das vigas com fibras (V_{fib}), com base no modelo de SWAMY et al. (1993), estudado no item 2.2 do Capítulo 2. Para a estimativa da parcela de esforço cortante proveniente da contribuição do concreto (V_c), foi utilizada a equação da FIB (1999).

Tabela 5.32 – Aplicação do modelo teórico às vigas da Série 4

<table>
<thead>
<tr>
<th>Viga</th>
<th>Vf (%)</th>
<th>τ_u (MPa)</th>
<th>σ_{cu} (MPa)</th>
<th>V_{fib} (kN)</th>
<th>V_c (kN)</th>
<th>V_u (kN)</th>
<th>$V_u - V_c$ (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP1A</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>15.53</td>
<td>14.21</td>
<td>13.51</td>
<td>≈ 0</td>
</tr>
<tr>
<td>VP1B</td>
<td>0.75</td>
<td>4.28</td>
<td>0.63</td>
<td>5.80</td>
<td>15.93</td>
<td>19.50</td>
<td>5.43</td>
</tr>
<tr>
<td>V10A</td>
<td>1.50</td>
<td>6.70</td>
<td>1.98</td>
<td>18.15</td>
<td>17.20</td>
<td>30.90</td>
<td>13.70</td>
</tr>
<tr>
<td>V11B</td>
<td>1.50</td>
<td>6.70</td>
<td>1.98</td>
<td>18.15</td>
<td>17.20</td>
<td>30.90</td>
<td>13.70</td>
</tr>
</tbody>
</table>

Na última coluna da Tabela 5.32, tem-se a parcela do esforço cortante obtido experimentalmente, proveniente da contribuição das fibras. Comparando esse valor, com o obtido pelo modelo teórico de SWAMY et al. (1993), verifica-se que esse modelo se aplicou razoavelmente bem às vigas V10A e V10B, porém não se aplicou bem às vigas V11A e V11B, prevendo mais do que o obtido experimentalmente.
5.4.5 Correlações entre lajes e vigas da Série 4

A quantificação do ganho de resistência, tanto para as vigas como para as lajes, pode ser encontrada na Tabela 5.33 ou no gráfico da Figura 5.60.

<table>
<thead>
<tr>
<th>V_f (%)</th>
<th>Lajes</th>
<th>Vigas</th>
<th>Correlação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P_u / \sqrt{f_c}$</td>
<td>ΔP_u (%)</td>
<td>$F_{u(\text{med})} / \sqrt{f_c}$</td>
</tr>
<tr>
<td>0</td>
<td>26,69</td>
<td>--</td>
<td>4,61</td>
</tr>
<tr>
<td>0,75</td>
<td>30,24</td>
<td>13,3</td>
<td>6,76</td>
</tr>
<tr>
<td>1,50</td>
<td>31,07</td>
<td>16,4</td>
<td>8,23</td>
</tr>
</tbody>
</table>

Figura 5.60 – Gráfico Resistência normalizada x Volume de fibras para lajes e vigas da Série 4

Pelo gráfico da Figura 5.60 percebe-se uma similaridade de comportamento entre as resistências das lajes e as das vigas da Série 4, sendo ambas crescentes com o aumento do volume de fibras. Plotando em um gráfico (Figura 5.61) a resistência média normalizada das vigas versus a resistência normalizada das lajes, verifica-se que a linha de tendência é do tipo linear.
Resultados Experimentais

\[y = 1.2424x + 21.216 \]
\[R^2 = 0.9452 \]

Figura 5.61 – Gráfico Resistência normalizada das lajes x Resistência média normalizada das vigas da Série 4

Na Figura 5.62 encontram-se os gráficos da força/força de pico versus o deslocamento/deslocamento de pico de lajes e vigas de mesma resistência do concreto e mesmo teor de fibras. Em cada um dos gráficos observa-se que o trecho pré-pico da laje e das duas vigas é praticamente coincidente.

Figura 5.62 – Gráficos Força/Força de pico x Deslocamento/Deslocamento de pico da S4

5.4.6 Análise comparativa: vigas Série 4 x vigas Ensaios-piloto Série 1

No caso desta série de concreto de resistência à compressão de aproximadamente 40 MPa, reforçado com fibras RL 45/50 BN, obteve-se uma correlação muito semelhante à observada nos Ensaios Piloto S1 (Tabela 5.34), onde tinham sido empregadas fibras ZP-305.
Tabela 5.34 – Comparação de resistências entre lajes e vigas dos Ensaios Piloto S1

<table>
<thead>
<tr>
<th>V_t (%)</th>
<th>Lajes</th>
<th>Vigas</th>
<th>Correlação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P_u/\sqrt{f_c}$</td>
<td>ΔP_u (%)</td>
<td>$F_{u(\text{med})}/\sqrt{f_c}$</td>
</tr>
<tr>
<td>0</td>
<td>26,69</td>
<td>--</td>
<td>4,61</td>
</tr>
<tr>
<td>0,75</td>
<td>28,17</td>
<td>5,5</td>
<td>6,61</td>
</tr>
<tr>
<td>1,50</td>
<td>35,61</td>
<td>33,4</td>
<td>7,64</td>
</tr>
</tbody>
</table>

Na Tabela 5.35 apresentam-se as deformações últimas de tração dos pontos situados na região de momento fletor máximo das vigas da Série 4 e das vigas dos Ensaios Piloto S1, para que possam ser comparadas. Aparentemente, a diminuição da relação de aspecto das vigas da Série 4 provocou diminuição de 10% nas deformações últimas de tração dos pontos centrais das armaduras.

Tabela 5.35 – Dados e resultados das vigas analisadas

<table>
<thead>
<tr>
<th>Viga</th>
<th>f_c (MPa)</th>
<th>V_t (%)</th>
<th>Tipo de fibra</th>
<th>ℓ/D</th>
<th>ℓ (mm)</th>
<th>Def (mm/m)</th>
<th>Def$_{\text{med}}$ (mm/m)</th>
<th>F_u (kN)</th>
<th>$F_{u(\text{med})}$ (kN)</th>
<th>$\Delta F_u/\Delta P_u$</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP1A</td>
<td>36,08</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1,64</td>
<td>1,49</td>
<td>28,42</td>
<td>27,01</td>
<td>4,61</td>
</tr>
<tr>
<td>VP1B</td>
<td>37,41</td>
<td>0,75</td>
<td>ZP-305</td>
<td>54,5</td>
<td>30</td>
<td>1,81</td>
<td>2,20</td>
<td>40,44</td>
<td>35,39*</td>
<td>6,61</td>
</tr>
<tr>
<td>VP2A</td>
<td>36,55</td>
<td>0,75</td>
<td>RL 45/50</td>
<td>48</td>
<td>50</td>
<td>1,93</td>
<td>1,66</td>
<td>42,71</td>
<td>38,99</td>
<td>6,76</td>
</tr>
<tr>
<td>VP2B</td>
<td>35,91</td>
<td>1,50</td>
<td>ZP-305</td>
<td>54,5</td>
<td>30</td>
<td>2,33</td>
<td>2,59</td>
<td>43,02</td>
<td>48,54</td>
<td>7,64</td>
</tr>
<tr>
<td>V10A</td>
<td>46,08</td>
<td>1,50</td>
<td>RL 45/50</td>
<td>48</td>
<td>50</td>
<td>2,00</td>
<td>2,48</td>
<td>49,99</td>
<td>61,79</td>
<td>8,23</td>
</tr>
</tbody>
</table>

* ensaio realizado com o dobro da velocidade dos outros (0,01 mm/s)

Observando a última coluna da Tabela 5.35, onde se tem o aumento da resistência das vigas com fibras em relação às vigas VP1 sem fibras, verifica-se que a alteração da relação de aspecto das fibras não influenciou a resistência das vigas ao cisalhamento. A diminuição da relação de aspecto de 54,5 para 48 produziu aumentos de 3,2% e 12,8% das resistências à punção, valores esses que podem ser desconsiderados.
Na Figura 5.63 apresenta-se o gráfico da força aplicada versus o deslocamento do ponto central de todos os modelos de viga analisados. No gráfico da Figura 5.64 a força foi normalizada em função da raiz quadrada da resistência do concreto à compressão. Desse gráfico observa-se o ganho de resistência média proporcionado pela adição das fibras de aço ao concreto, crescente com o volume de fibras empregado.

![Figura 5.63 – Gráfico Força x Deslocamento das vigas analisadas](image)

No gráfico da Figura 5.64 comprova-se que a alteração da relação de aspecto de 54,5 para 48 não alterou significativamente a resistência à punção.
No gráfico da Figura 5.65 obtém-se uma melhor avaliação da ductilidade dos modelos, de modo independente das resistências à punção alcançadas. Do gráfico observa-se que a alteração da relação de aspecto de 54,5 para 48 não alterou de forma significativa a ductilidade das vigas.
5.5 Modelos da Série 5

Na Série 5 foram ensaiadas vigas de concreto com resistência à compressão de aproximadamente 75 MPa aos 14 dias, reforçadas com fibras HSCF-25 da HAREX, a fim de serem comparadas com três lajes ensaiadas por ZAMBRANA VARGAS (1997), cujas características estão apresentadas na inicialmente foram feitos ensaios-piloto de vigas correspondentes a algumas lajes ensaiadas por AZEVEDO (1999), cujas características foram descritas na Tabela 4.1.

Uma vez detectadas tendências similares entre as vigas e as lajes, foram programadas as séries de ensaios detalhadas na Tabela 4.15, variando alguns parâmetros em relação aos utilizados nos ensaios-piloto, os quais foram considerados como parâmetros de referência.

Nas séries S1 e S2 procurou-se observar se as correlações entre laje e viga, detectadas nos ensaios-piloto, são válidas alterando-se o volume de fibras e a resistência do concreto à compressão. Na série S3 tentou-se correlacionar vigas de altura maior com as vigas ou lajes da série S2.
Na série S4 pretendeu-se verificar se a mudança da relação de aspecto e, principalmente, do comprimento da fibra, altera a correlação entre laje e viga, detectada nos ensaios-piloto. Para esse estudo foram utilizados os resultados da laje OSC.S1 de AZEVEDO (1999). Quanto à fibra longa, optou-se pela fibra RL 45/50 BN, já que o seu comprimento não excede 1/3 da menor dimensão do corpo-de-prova cilíndrico 15x30 (ABNT NBR 5738/1994).

Por fim, considerando as hipóteses levantadas nas séries S3 e S4, pretendeu-se utilizar essas conclusões moldando-se vigas para serem correlacionadas com as lajes ensaiadas por ZAMBRANA VARGAS (1997), cujas características estão na Tabela 4.14. Nessas vigas foi utilizada a mesma taxa de armadura da laje, porém foram mudadas a altura útil e a dimensão da chapa de aplicação do carregamento.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>h (cm)</th>
<th>d (cm)</th>
<th>c (cm)</th>
<th>h (%)</th>
<th>f_{c14} (MPa)</th>
<th>f_{t14} (MPa)</th>
<th>Vf (%)</th>
<th>Pu (kN)</th>
<th>θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L07</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>1,73</td>
<td>88,7</td>
<td>5,3</td>
<td>0</td>
<td>101</td>
<td>18,6</td>
</tr>
<tr>
<td>L08</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>1,73</td>
<td>79,0</td>
<td>6,3</td>
<td>0,75</td>
<td>112</td>
<td>25,8</td>
</tr>
<tr>
<td>L09</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>1,73</td>
<td>93,0</td>
<td>7,6</td>
<td>1,5</td>
<td>136</td>
<td>17,0</td>
</tr>
</tbody>
</table>

Segundo o autor, todas as lajes romperam por punção pura.

Nesta série pretende-se confirmar se, como aconteceu na Série 3, a mudança da altura útil das vigas, em relação à altura útil das lajes de ZAMBRANA VARGAS (1997), não altera a correlação existente entre laje e viga, detectada nos ensaios-piloto.

ZAMBRANA VARGAS (1997) utilizou altura útil de 4 cm em suas lajes, e nesta série será utilizada altura útil de 8,5 cm nas vigas. Além disso, foi modificada a dimensão da chapa quadrada de aplicação do carregamento, passando de 10 cm nas lajes para 8 cm nas vigas. A taxa de armadura de flexão é a mesma, tanto nas lajes como nas vigas.

5.5.1 Características dos materiais da Série 5

As características das armaduras de flexão encontram-se na Tabela 5.1 e o traço do concreto na Tabela 5.37, sendo o mesmo utilizado por ZAMBRANA
VARGAS (1997). Apesar de utilizado o mesmo traço nas vigas, houve uma diminuição da resistência do concreto à compressão de aproximadamente 10 MPa, o que pode comprometer as correlações entre lajes e vigas.

Na Tabela 5.38 estão mostrados os resultados dos ensaios de caracterização do concreto utilizado nos modelos da Série 5.

Na Tabela 5.39 apresentam-se os índices médios de tenacidade à flexão, calculados a partir dos gráficos força x deslocamento de cada prisma e efetuando-se as médias dos índices de um mesmo compósito. Os índices de tenacidade à flexão de cada prisma encontram-se no Anexo.

Da Tabela 5.39 observa-se que os índices de tenacidade à flexão foram muito baixos para esse tipo de fibra, em comparação com os das outras fibras utilizadas. Inclusive, nos prismas P10, não foi possível de se obter os índices I20 e I30 em todos os corpos-de-prova, pois o ramo descendente da curva força x deslocamento nem sempre atingiu os valores de deslocamento correspondentes a 10,5 e 15,5 vezes o deslocamento da primeira fissura. Isso pode ser explicado porque, nos ensaios desta série, as fibras são rompidas e não arrancadas, conforme ocorre nas outras séries.
Tabela 5.37 – Traço do concreto dos modelos da Série 5

| Traço 1:0,1:1,33:2,33:0,34 |

<table>
<thead>
<tr>
<th>Materiais</th>
<th>Consumo (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cimento Ciminas CP V-ARI PLUS</td>
<td>470,59</td>
</tr>
<tr>
<td>Microsilica SILMIX</td>
<td>47,06</td>
</tr>
<tr>
<td>Areia</td>
<td>625,88</td>
</tr>
<tr>
<td>Brita 1 (ϕ_max=19 mm)</td>
<td>1096,47</td>
</tr>
<tr>
<td>Água</td>
<td>160,00</td>
</tr>
<tr>
<td>Aditivo</td>
<td>--</td>
</tr>
<tr>
<td>Superplastificante REAX 3000 (γ = 1,16 kg/m³)</td>
<td>--</td>
</tr>
</tbody>
</table>

Fibra HSCF-25 HAREX

- ℓ = 25 mm
- D = 0,667 mm
- ℓ / D = 37,48
- f_y = 770 MPa

Tabela 5.38 – Resultados dos ensaios de caracterização dos concretos utilizados na S5

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Volume de fibras (%)</th>
<th>f_c (MPa)</th>
<th>f_{ct,sp} (MPa)</th>
<th>f_{ct,f} (MPa)</th>
<th>f_r (MPa)</th>
<th>E_c (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V12A, V12B</td>
<td>0</td>
<td>75,27</td>
<td>4,46</td>
<td>4,49</td>
<td>--</td>
<td>36451</td>
</tr>
<tr>
<td>V13A, V13B</td>
<td>0,75</td>
<td>73,50</td>
<td>5,65</td>
<td>6,96</td>
<td>4,96</td>
<td>35332</td>
</tr>
<tr>
<td>V14A, V14B</td>
<td>1,50</td>
<td>73,10</td>
<td>7,96</td>
<td>6,62</td>
<td>4,85</td>
<td>36097</td>
</tr>
</tbody>
</table>

f_{ct,sp}: resistência à tração por compressão diametral
f_{ct,f}: resistência à tração na flexão
f_r: resistência do compósito à primeira fissura
Tabela 5.39 – Índices médios de tenacidade à flexão dos compósitos da Série 5

<table>
<thead>
<tr>
<th>Prisma</th>
<th>Volume de fibras (%)</th>
<th>Índices de tenacidade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ASTM C1018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I5</td>
</tr>
<tr>
<td>P10</td>
<td>0,75</td>
<td>5,7</td>
</tr>
<tr>
<td>P11</td>
<td>1,50</td>
<td>5,2</td>
</tr>
</tbody>
</table>

Na Tabela 5.40 apresentam-se as previsões das cargas de ruína das lajes à punção e à flexão, e das cargas de ruína das vigas ao cisalhamento e à flexão, considerando uma resistência média de 75 MPa do concreto à compressão.

Tabela 5.40 – Previsão da carga de ruína das vigas da Série 5

<table>
<thead>
<tr>
<th></th>
<th>F_{cis} (kN)</th>
<th>F_{fle} (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41,90</td>
<td>54,98</td>
</tr>
</tbody>
</table>

O sistema de ensaio das vigas da Série 5 é o mesmo apresentado na Figura 5.13, aproveitando o pórtico e o atuador usados nos ensaios das lajes. Foram colocados dois transdutores de curso 20 mm no centro da viga e foi utilizado o dispositivo “yoke”.

As vigas foram dimensionadas para romperem por cisalhamento por tração diagonal \((a/d = 3,1)\).

5.5.2 Ensaio das vigas da Série 5

Na Tabela 5.41 apresentam-se alguns dados e resultados dos ensaios das vigas da Série 5.

De acordo com o esperado, para a relação \(a/d\) utilizada, a ruptura das vigas foi por tração diagonal. Na Figura 5.66 apresenta-se a configuração de ruína das vigas da Série 5.
Tabela 5.41 – Dados e resultados das vigas da Série 5

<table>
<thead>
<tr>
<th>Viga</th>
<th>V12A</th>
<th>V12B</th>
<th>V13A</th>
<th>V13B</th>
<th>V14A</th>
<th>V14B</th>
</tr>
</thead>
<tbody>
<tr>
<td>h (cm)</td>
<td>10</td>
<td>8,5</td>
<td>10</td>
<td>8,5</td>
<td>10</td>
<td>8,5</td>
</tr>
<tr>
<td>d (cm)</td>
<td>11</td>
<td>1,71</td>
<td>11</td>
<td>1,71</td>
<td>11</td>
<td>1,71</td>
</tr>
<tr>
<td>ρ (%)</td>
<td>0</td>
<td></td>
<td>0,75</td>
<td></td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>Vf (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_r (kN)</td>
<td>11,4</td>
<td>11,4</td>
<td>15,5</td>
<td>14,0</td>
<td>11,4</td>
<td>11,4</td>
</tr>
<tr>
<td>F_r (teor) (kN)</td>
<td>9,32</td>
<td>9,32</td>
<td>14,45</td>
<td>14,45</td>
<td>13,74</td>
<td>13,74</td>
</tr>
<tr>
<td>Fu (kN)</td>
<td>46,39</td>
<td>46,39</td>
<td>62,64</td>
<td>62,64</td>
<td>67,50</td>
<td>67,50</td>
</tr>
<tr>
<td>θ (%)</td>
<td>43</td>
<td>43</td>
<td>23</td>
<td>23</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Como não havia estribos e o concreto era de alta resistência, as vigas V12 romperam de forma brusca e sem ductilidade, e caracterizando claramente uma ruína por cisalhamento. Não apareceram fissuras visíveis de flexão nas vigas V12, a primeira fissura já foi inclinada. Apareceram algumas outras fissuras inclinadas nos dois lados das vigas, e uma delas tornou-se crítica, subindo rapidamente até o ponto de aplicação da carga.

Nas vigas V13 surgiram algumas fissuras visíveis de flexão. Em V13A a armadura chegou a escoar no ponto de momento fletor máximo, antes da ruína, com a carga de aproximadamente 57 kN. Entretanto, mesmo a armadura tendo escoado, a ruína se deu bruscamente após a instabilidade de uma fissura diagonal de cisalhamento, que se tornou crítica. A fissura crítica não se formou apenas minutos antes da ruína, ela já havia sido formada com uma carga de aproximadamente 48 kN, quando houve um estrondo. Nesse momento apareceram as fissuras de flexão. A partir daí percebeu-se o ruído de fibras sendo arrancadas. Depois de algum tempo, a carga caiu rapidamente para 20 kN, pois as fibras já estavam sendo arrancadas há um bom tempo, e a viga não resistiu mais. A ruína pode ser caracterizada por cisalhamento/flexão.

Em V13B a armadura não chegou a escoar antes da ruína e apareceram poucas fissuras de flexão. A ruína pode ser caracterizada por cisalhamento.

Na viga V14A surgiram algumas fissuras visíveis de flexão. A armadura chegou a escoar no ponto de momento fletor máximo, antes da ruína, com a carga de aproximadamente 63 kN. Entretanto, mesmo a armadura tendo escoado, a ruína se deu bruscamente, após a instabilidade de uma fissura diagonal de cisalhamento, que se tornou crítica. A fissura crítica não se formou apenas minutos antes da ruína, ela já havia sido formada com uma carga de aproximadamente 48 kN,
quando houve um estrondo. Nesse momento apareceram as fissuras de flexão. A partir daí percebeu-se o ruído de fibras sendo arrancadas. Depois de algum tempo, a carga caiu rapidamente para 26 kN, pois as fibras já estavam sendo arrancadas há um bom tempo, e a viga não resistiu mais. A ruína pode ser caracterizada por cisalhamento/flexão. As fibras em teor elevado permitiram que a viga V14A permanecesse totalmente íntegra após a ruína, mais ainda do que a viga V13A.

Em V14B a armadura não chegou a escoar antes da ruína e não apareceram fissuras visíveis de flexão. A fissura diagonal formou-se em apenas um dos lados da viga. A ruína pode ser caracterizada por cisalhamento.

Na Figura 5.66, Figura 5.67, Figura 5.68, e Figura 5.69 apresentam-se os gráfico da força aplicada versus a deformação do ponto central das armaduras de flexão das vigas da Série 5. Verifica-se que em V13A e em V14A, a deformação última superou o valor da deformação de escoamento, ficando em 2,88% e 2,85%.
respectivamente. Em todas as vigas as deformações de tração nas armaduras diminuíram bastante após a ruína.

Figura 5.67 – Gráfico \textit{Força x Deformação da armadura} das vigas V12 da Série 5

Figura 5.68 – Gráfico \textit{Força x Deformação da armadura} das vigas V13 da Série 5
Na Figura 5.70 apresenta-se o gráfico da força aplicada versus o deslocamento do ponto central de todos os modelos de viga da Série 5. No gráfico da Figura 5.71 a força foi normalizada em função da raiz quadrada da resistência do concreto à compressão. Desse gráfico observa-se o ganho de resistência média proporcionado pela adição das fibras de aço ao concreto, crescente com o volume de fibras empregado.
Figura 5.71 – Gráfico Força Normalizada x Deslocamento das vigas da Série 5

No gráfico da Figura 5.72 obtém-se uma melhor avaliação da ductilidade dos modelos, de modo independente das resistências ao cisalhamento alcançadas. Do gráfico observa-se o ganho de ductilidade proporcionado pela adição das fibras de aço ao concreto, também crescente com o volume de fibras adicionado.
Na Tabela 5.42 observa-se a atuação das fibras nas vigas da Série 5. Com a adição de 0,75% e 1,5% de fibras, obtiveram-se ganhos de resistência ao cisalhamento de 19,0% e 28,6%, respectivamente para as vigas V13 e V14, em relação às vigas V12.

Tabela 5.42 – Atuação das fibras nos compósitos das vigas da Série 5

<table>
<thead>
<tr>
<th>Viga</th>
<th>V12</th>
<th>V13</th>
<th>V14</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_f (%)</td>
<td>0</td>
<td>0,75</td>
<td>1,5</td>
</tr>
<tr>
<td>$\frac{F_{u(med)}}{\sqrt{f_c}}$</td>
<td>5,60</td>
<td>6,65</td>
<td>7,17</td>
</tr>
<tr>
<td>ℓ_f (mm)</td>
<td>--</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>ℓ_c^* (mm)</td>
<td>--</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>Tipo de ruptura</td>
<td>--</td>
<td>ruptura das fibras</td>
<td>ruptura das fibras</td>
</tr>
<tr>
<td>$V_{f(crit)}$ (%)</td>
<td>--</td>
<td>1,8</td>
<td>1,3</td>
</tr>
</tbody>
</table>

* Aproximação através da aplicação do modelo para fibras retas (Equação 2.1)

Na Tabela 5.43 encontra-se a estimativa da carga de ruína das vigas com fibras (V_{fib}), com base no modelo de SWAMY et al. (1993), estudado no item 2.2 do
Capítulo 2. Para a estimativa da parcela de esforço cortante proveniente da contribuição do concreto \((V_c)\), foi utilizada a média das cargas de ruína das vigas V12, pois as equações normativas não abrangem concreto desse teor de resistência à compressão.

<table>
<thead>
<tr>
<th>Viga</th>
<th>(V_f) (%</th>
<th>(\tau_{fu}) (MPa)</th>
<th>(\sigma_{cu}) (MPa)</th>
<th>(V_{fib}) (MPa)</th>
<th>(V_c) (kN)</th>
<th>(V_u) (kN)</th>
<th>(V_u - V_c) (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V12A</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>24,30</td>
<td>23,20</td>
<td>25,40</td>
<td>(\approx 0)</td>
</tr>
<tr>
<td>V12B</td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V13A</td>
<td>0,75</td>
<td>11,65</td>
<td>1,32</td>
<td>11,14</td>
<td>31,32</td>
<td>25,72</td>
<td>7,02</td>
</tr>
<tr>
<td>V13B</td>
<td></td>
<td>11,65</td>
<td>1,32</td>
<td>11,14</td>
<td>31,32</td>
<td>25,72</td>
<td>7,02</td>
</tr>
<tr>
<td>V14A</td>
<td>1,50</td>
<td>16,98</td>
<td>3,30</td>
<td>27,80</td>
<td>33,75</td>
<td>27,55</td>
<td>9,45</td>
</tr>
<tr>
<td>V14B</td>
<td></td>
<td>16,98</td>
<td>3,30</td>
<td>27,80</td>
<td>33,75</td>
<td>27,55</td>
<td>9,45</td>
</tr>
</tbody>
</table>

Na última coluna da Tabela 5.43, tem-se a parcela do esforço cortante obtido experimentalmente, proveniente da contribuição das fibras. Comparando esse valor, com o obtido pelo modelo teórico de SWAMY et al. (1993), verifica-se que esse modelo não forneceu resultados satisfatórios aos ensaios da Série 5, prevendo mais do que o obtido experimentalmente.

5.5.3 Correlações entre lajes de ZAMBRANA VARGAS (1997) e vigas da Série 5

A quantificação do ganho de resistência, tanto para as vigas como para as lajes, pode ser encontrada na Tabela 5.44 ou no gráfico da Figura 5.73.
Tabela 5.44 – Comparação de resistências entre lajes e vigas da Série 5

<table>
<thead>
<tr>
<th>V_f (%)</th>
<th>Lajes</th>
<th>Vigas</th>
<th>Correlação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{P_u}{\sqrt{f_c}} \Delta P_u$ (%)</td>
<td>$\frac{F_{u\text{(med)}}}{\sqrt{f_c}} \Delta F_u$ (%)</td>
<td>$\frac{\Delta F_u}{\Delta P_u}$</td>
</tr>
<tr>
<td>0</td>
<td>10,72</td>
<td>--</td>
<td>5,60</td>
</tr>
<tr>
<td>0,75</td>
<td>12,60</td>
<td>17,5</td>
<td>6,65</td>
</tr>
<tr>
<td>1,5</td>
<td>14,10</td>
<td>31,5</td>
<td>7,17</td>
</tr>
</tbody>
</table>

Figura 5.73 – Gráfico Resistência normalizada x Volume de fibras para lajes e vigas da S5

Pelo gráfico da Figura 5.73 percebe-se uma similaridade de comportamento entre as resistências das lajes e as das vigas da Série 5, sendo ambas crescentes com o aumento do volume de fibras empregado. Plotando em um gráfico (Figura 5.74) a resistência média normalizada das vigas versus a resistência normalizada das lajes, verifica-se que a linha de tendência é do tipo linear.
Com essa série de ensaios verificou-se que a correlação entre laje e viga continuou existindo mesmo entre lajes e vigas de diferentes alturas úteis e dimensões da chapa de aplicação do carregamento.

5.6 Correlações de ductilidade entre lajes e vigas análogas

Neste item tentou-se determinar quantitativamente a ductilidade das lajes, de uma maneira derivada do método da JSCE-SF4/84, por meio de correlações com as ductilidades das vigas análogas.

Conforme visto na Figura 5.2, a norma japonesa define a tenacidade à flexão como sendo a energia necessária para fletir um prisma não armado de concreto reforçado com fibras, a um deslocamento de 1/150 do vão, medido no meio do vão, de acordo com a Equação 5.3.

\[
\bar{\sigma}_b = \frac{T_b}{\delta_{ib}} \cdot \frac{\ell}{b h^2}
\]

sendo:

\(\bar{\sigma}_b\) -> índice de tenacidade à flexão (kN/cm²);

\(T_b\) -> área sob a curva força x deslocamento até o limite de \(\ell/150\) (kN.mm);

\(\delta_{ib}\) -> deslocamento vertical equivalente a \(\ell/150\) (mm);

\(\ell\) -> vão do corpo-de-prova prismático (cm);

\(b\) -> largura do corpo-de-prova prismático (cm);
h \rightarrow \text{altura do corpo-de-prova prismático (cm)}.

Utilizando um raciocínio semelhante para as lajes ensaiadas à punção, e considerando o vão de 102,5 cm, a altura de 10 cm e a base de 116 cm, determinam-se os índices de ductilidade das lajes (i_L). Da mesma forma determinam-se os índices de ductilidade das vigas (i_V) ao cisalhamento, considerando agora o vão de 53 cm, a altura de 10 cm e a base de 12 cm, conforme os dados experimentais. Os resultados desses cálculos encontram-se na Tabela 5.45.

Tabela 5.45 – Índices de ductilidade de lajes e vigas análogas
<table>
<thead>
<tr>
<th>Laje</th>
<th>Área</th>
<th>i_L ((\overline{\sigma}_b))</th>
<th>Viga</th>
<th>Área</th>
<th>Área média</th>
<th>i_V ((\overline{\sigma}_b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>--</td>
<td>--</td>
<td>V1A</td>
<td>--</td>
<td>--</td>
<td>V1B</td>
</tr>
<tr>
<td>L2</td>
<td>691,02877</td>
<td>0,894 0</td>
<td>V2A</td>
<td>119,1458 9</td>
<td>119,05102</td>
<td>1,4895 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V2B</td>
<td>118,9561 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>856,35318</td>
<td>1,107 9</td>
<td>V3A</td>
<td>133,0004 3</td>
<td>134,41373</td>
<td>1,6817 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V3B</td>
<td>135,8270 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>--</td>
<td>--</td>
<td>V4A</td>
<td>--</td>
<td>--</td>
<td>V4B</td>
</tr>
<tr>
<td>L5</td>
<td>1054,2723 2</td>
<td>1,363 9</td>
<td>V5A</td>
<td>148,6164 8</td>
<td>145,47495</td>
<td>1,8201 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V5B</td>
<td>142,3334 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td>1150,6430 8</td>
<td>1,488 6</td>
<td>V6A</td>
<td>147,8940 6</td>
<td>141,28806</td>
<td>1,7677 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V6B</td>
<td>134,6820 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSC.S1</td>
<td>--</td>
<td>--</td>
<td>VP1A</td>
<td>--</td>
<td>--</td>
<td>VP1B</td>
</tr>
<tr>
<td>L7</td>
<td>843,76893</td>
<td>1,091 6</td>
<td>V10A</td>
<td>121,7180 9</td>
<td>114,90083</td>
<td>1,4376 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V10B</td>
<td>108,0835 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L8</td>
<td>1019,8288 4</td>
<td>1,319 4</td>
<td>V11A</td>
<td>144,4248 5</td>
<td>157,08445</td>
<td>1,9654 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V11B</td>
<td>169,7440 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Procurando relacionar índices de ductilidade de lajes e vigas análogas submetidas a esforços cortantes, efetuou-se uma regressão linear dos resultados apresentados na Tabela 5.45, obtendo-se a Equação 5.4.

\[
i_L = 0.8183 i_V - 0.1751
\]

sendo

- $i_L \rightarrow \text{índice de ductilidade da laje};$
- $i_V \rightarrow \text{índice de ductilidade da viga análoga}.$
Resultados Experimentais

Figura 5.75 – Relação entre índices de ductilidade de lajes e vigas análogas

Do gráfico da Figura 5.75 observa-se que os índices de ductilidade de lajes e vigas análogas submetidas a esforços cortantes apresentam uma certa proporcionalidade.

Desse estudo pode-se concluir que índices de ductilidade obtidos em ensaios de flexão de vigas armadas dimensionadas para romperem por cisalhamento são bons indicadores de índices de ductilidade de lajes análogas submetidas ao puncionamento.

No Capítulo 6 apresenta-se um outro estudo mais aprofundado sobre índices de ductilidade de lajes e vigas, feito a partir do Modelo Viga-arco Modificado.

5.7 Análise conjunta das lajes

Todas as lajes ensaiadas foram dimensionadas para romperem por punção, e os resultados experimentais vieram a confirmar que isto realmente aconteceu. O gráfico da Figura 5.76 mostra que todas as lajes romperam com carga inferior à estimada para ruína à flexão. Existe uma tendência da carga de ruína das lajes se aproximar da estimada para ruína à flexão, à medida que se incorpora um maior volume de fibras ao concreto. Isso significa que a introdução de fibras de aço contribuiu na ductilidade da ruína. O melhor resultado desta análise foi obtido na Série 2, utilizando-se concreto de alta resistência e 2% de fibras de aço.
No gráfico da Figura 5.77 observa-se que em todas as séries houve um aumento da carga última, crescente com o volume de fibras empregado. Nas séries 1 e 2, onde foi utilizado como agregado o pedrisco, o segundo trecho das curvas apresentou maior inclinação do que o primeiro, indicando um maior crescimento da resistência quando adicionados maiores volumes de fibras. Já na Série 4, onde foi utilizada brita 1, o maior aumento de resistência ocorreu até o volume de 0,75%, depois o aumento foi menor. Isso pode ser decorrente do fato de que, ao se utilizar um agregado de diâmetro máximo (ϕ19mm) inadequado ao tamanho da fibra (ℓ=50mm), é menor a eficiência das fibras no processo de “costura” das fissuras.
Do gráfico da Figura 5.77 observa-se ainda que a maior resistência normalizada à punção das lajes sem fibras foi a da laje da Série 1, de $f_{ck} \approx 25$ MPa, seguida pela laje da Série 4, de $f_{ck} \approx 40$ MPa e por último a da Série 2, de $f_{ck} \approx 60$ MPa, devido à fragilidade do concreto de alta resistência. Adicionando-se as fibras, percebe-se uma inversão dessa ordem para teores acima de 1,5%, ou seja, a maior resistência à punção foi obtida pela laje da Série 2, seguida da laje da Série 4, e por último a laje da Série 1. Pode-se também dizer que as fibras foram mais eficientes no concreto de alta resistência.

Nos gráficos da Figura 5.78 algumas lajes foram separadas em dois grupos, de acordo com o teor de fibras incorporado ao concreto: lajes L2 e L5 (1% de fibras) e lajes L3 e L6 (2% de fibras). O objetivo desta análise é avaliar a influência da resistência do concreto à compressão nas resistências: à fissuração, ao escoamento da armadura e à ruptura das lajes. De uma maneira geral, tanto no grupo com 1% de fibras como no grupo com 2% de fibras, houve uma tendência de aumento das resistências, à medida que se aumentou a resistência do concreto à compressão.
5.8 Síntese das similaridades

Na Tabela 5.46 é feita uma síntese das similaridades observadas entre lajes e vigas análogas, com relação a alguns aspectos: resistência última, resistência à fissuração, ângulo da fissura crítica com a horizontal e índice de ductilidade. No caso das vigas, foram utilizados valores médios entre as vigas A e B, para efeito de comparação com as lajes.

Ao se apresentar essa tabela, a intenção é observar as tendências demonstradas pelos resultados dos ensaios de lajes e vigas.

Como se pode notar, em alguns casos, as tendências observadas nas vigas manifestaram-se igualmente nas lajes, do ponto de vista qualitativo. Nesses casos, as quadrículas correspondentes são destacadas pelo preenchimento com a cor azul-claro.

Em outros casos, houve discordância entre as tendências demonstradas pelas vigas e lajes, em geral contrariando a lógica. Supõe-se que —muito provavelmente— tenham ocorrido incidentes nos ensaios ou variações inesperadas nas propriedades dos materiais, por perda parcial do controle de parâmetros na análise experimental. Pode-se citar como exemplo a possível distorção dos resultados experimentais pela maior quantidade de ar incorporado ou a deficiência de adensamento do concreto com o aumento do volume de fibras de aço.

Observando-se o aumento da resistência última normalizada de vigas e lajes com o aumento do volume de fibras, nota-se que esta tendência mostrou-se consistente em todas as séries de ensaios, com exceção da Série 1. A laje L2 (1% de fibras) revelou praticamente a mesma resistência da laje L1, sem fibras, e a laje L3, com 2% de fibras, mostrou um aumento menor que 10% em relação à L1.
Portanto, esta série de ensaios merece ser vista com alguma suspeita, por contrariar a tendência observada nas demais séries.

Observando-se a variação da resistência normalizada à fissuração de vigas e lajes com o aumento do volume de fibras, nota-se que houve similaridade de comportamento entre os dois elementos estruturais em praticamente todas as séries de ensaios onde havia dados disponíveis para a comparação, com exceção da Série 1, provavelmente por motivos já discutidos.

Observando-se a variação do ângulo que a fissura crítica faz com a horizontal, com relação ao aumento do volume de fibras, nota-se que houve similaridade de comportamento entre lajes e vigas análogas, praticamente em todas as séries de ensaios.

Observando-se o aumento do índice de ductilidade de vigas e lajes com o aumento do volume de fibras, nota-se que esta tendência mostrou-se consistente em todas as séries de ensaios onde havia dados disponíveis para a comparação.
<table>
<thead>
<tr>
<th></th>
<th>SÉRIE 1</th>
<th></th>
<th></th>
<th></th>
<th>SÉRIES 2 e 3</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1A</td>
<td>V2A</td>
<td>V3A</td>
<td>L1</td>
<td>V4A</td>
<td>V5A</td>
<td>V6A</td>
<td>V7A</td>
<td>V8A</td>
<td>V9A</td>
<td>L4</td>
</tr>
<tr>
<td>Resistência última normalizada</td>
<td>5,67</td>
<td>9,19</td>
<td>10,02</td>
<td>28,53</td>
<td>28,25</td>
<td>30,89</td>
<td>4,81</td>
<td>9,02</td>
<td>7,67</td>
<td>6,71</td>
<td>12,85</td>
</tr>
<tr>
<td>Resistência última normalizada</td>
<td></td>
</tr>
<tr>
<td>Volume de fibras</td>
<td></td>
</tr>
<tr>
<td>Resistência normalizada à fissuração</td>
<td>2,28</td>
<td>2,65</td>
<td>2,83</td>
<td>8,03</td>
<td>10,9</td>
<td>10,5</td>
<td>1,26</td>
<td>1,15</td>
<td>1,57</td>
<td>3,15</td>
<td>2,74</td>
</tr>
<tr>
<td>Resistência normalizada à fissuração</td>
<td></td>
</tr>
<tr>
<td>Volume de fibras</td>
<td></td>
</tr>
<tr>
<td>Ângulo da fissura crítica com a horizontal</td>
<td>40°</td>
<td>27,5°</td>
<td>27°</td>
<td>26,4°</td>
<td>31,6°</td>
<td>30,2°</td>
<td>29,7°</td>
<td>24,3°</td>
<td>24,6°</td>
<td>30°</td>
<td>38°</td>
</tr>
<tr>
<td>Ângulo da fissura crítica com a horizontal</td>
<td></td>
</tr>
<tr>
<td>Volume de fibras</td>
<td></td>
</tr>
<tr>
<td>Índice de ductilidade</td>
<td>--</td>
<td>1,49</td>
<td>1,68</td>
<td>--</td>
<td>0,89</td>
<td>1,11</td>
<td>--</td>
<td>1,82</td>
<td>1,77</td>
<td>--</td>
<td>2,10</td>
</tr>
<tr>
<td>Índice de ductilidade</td>
<td></td>
</tr>
<tr>
<td>Volume de fibras</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SÉRIE 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SÉRIE 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VP1A</td>
<td>VP1B</td>
<td>V10A</td>
<td>V10B</td>
<td>V11A</td>
<td>V11B</td>
<td>OSC.S1</td>
<td>L7</td>
<td>L8</td>
<td>V12A</td>
<td>V12B</td>
</tr>
<tr>
<td>Resistência última normalizada</td>
<td>4,61</td>
<td>6,76</td>
<td>8,23</td>
<td>26,69</td>
<td>30,24</td>
<td>31,07</td>
<td>5,60</td>
<td>6,65</td>
<td>7,17</td>
<td>10,72</td>
<td>12,60</td>
</tr>
<tr>
<td>Resistência última normalizada</td>
<td></td>
</tr>
<tr>
<td>x Volume de fibras</td>
<td></td>
</tr>
<tr>
<td>Resistência normalizada à fissuração</td>
<td>1,51</td>
<td>1,89</td>
<td>2,17</td>
<td>8,50</td>
<td>12,79</td>
<td>12,36</td>
<td>1,31</td>
<td>1,72</td>
<td>1,33</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>x Volume de fibras</td>
<td></td>
</tr>
<tr>
<td>Ângulo da fissura crítica com a horizontal</td>
<td>37,1°</td>
<td>28°</td>
<td>40°</td>
<td>23,7°</td>
<td>19,9°</td>
<td>23,8°</td>
<td>33°</td>
<td>24°</td>
<td>40°</td>
<td>18,6°</td>
<td>25,8°</td>
</tr>
<tr>
<td>x Volume de fibras</td>
<td></td>
</tr>
<tr>
<td>Índice de ductilidade</td>
<td>--</td>
<td>1,44</td>
<td>1,97</td>
<td>--</td>
<td>1,09</td>
<td>1,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x Volume de fibras</td>
<td></td>
</tr>
</tbody>
</table>
Neste capítulo são efetuadas algumas análises teóricas a partir dos resultados experimentais. Na Tabela 6.1 e na Tabela 6.2 encontram-se resumidos os principais dados e resultados experimentais de todos os modelos analisados, incluindo os que foram ensaiados nesta pesquisa e os que serviram de referência, dados por ZAMBRANA VARGAS (1997) e AZEVEDO (1999).

Analisando os resultados dos modelos ensaiados nesta pesquisa, consideram-se suspeitos os resultados de resistência à punção das lajes L2 e L3. O valor da resistência à punção de L2 foi praticamente igual ao de L1 (sem fibras), e o de L3 foi apenas pouco maior do que o de L2. É provável que a fibra utilizada não tenha sido eficiente no concreto de baixa resistência, utilizado na Série 1.

Os valores de resistência ao cisalhamento das vigas V6A e V6B também podem ser considerados suspeitos, uma vez que, com o aumento do volume específico de fibras, em relação às vigas V5A e V5B, se esperaria um aumento da resistência ao cisalhamento.

No Capítulo 5 foram discutidas as razões que poderiam explicar a falta de consistência desses resultados.
<table>
<thead>
<tr>
<th>Série</th>
<th>Modelo de lajes</th>
<th>Modelo de vigas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laje</td>
<td>h (cm)</td>
</tr>
<tr>
<td>S1</td>
<td>L1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>L4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L6</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Série</td>
<td>Modelos de lajes</td>
<td>Modelos de vigas</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Laje</td>
<td>h (cm)</td>
</tr>
<tr>
<td>S4</td>
<td>OSC.S1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>L7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>L8</td>
<td>10</td>
</tr>
<tr>
<td>S5</td>
<td>L07</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>L08</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>L09</td>
<td>6</td>
</tr>
</tbody>
</table>
6.1 Análise global das lajes

Neste item pretende-se analisar o efeito do aumento do volume específico de fibras de aço, na resistência à punção das lajes estudadas, considerando-se como parâmetro de referência a resistência do concreto à tração e a equação do ACI 318 (1999) para cálculo da resistência à punção de lajes sem armadura de punção, a exemplo do que foi feito por HOLANDA & HANAI (2002).

Um dos parâmetros que têm grande influência na resistência de lajes à punção é a resistência do concreto à tração. No entanto, na maioria das normas técnicas de projeto, ele se apresenta de forma indireta nas expressões de cálculo, as quais incluem a resistência do concreto à compressão.

A resistência do concreto à compressão pode ser relacionada com sua resistência à tração por compressão diametral, segundo o ACI 318 (1999), como mostra a Equação 6.1.

\[f_{sp} = 0.5563 \sqrt{f_c} \] \hspace{1cm} (6.1)

sendo \(f_c \) a resistência do concreto à compressão axial e \(f_{sp} \) a resistência do concreto à tração por compressão diametral, ambas em [MPa].

Para relacionar a resistência à tração por compressão diametral com a resistência à compressão, no caso de concreto com fibras, efetuou-se uma regressão linear (Figura 6.1) dos resultados experimentais das lajes estudadas (Tabela 6.3). Obteve-se a Equação 6.2, que relaciona a resistência média à tração com a resistência média à compressão e com o volume percentual de fibras (\(V_f \)). Para essa equação assumiu-se uma forma similar à Equação 6.1.

\[f_{sp} = (0.19 V_f + 0.53) \sqrt{f_c} \] \hspace{1cm} (6.2)

sendo \(f_{sp} \) e \(f_c \) dados em [MPa] e \(V_f \) em [%].
Figura 6.1 – Relação entre a resistência do concreto à tração por compressão diametral e o volume de fibras de aço das lajes

Para traçar o gráfico da Figura 6.1 foram eliminadas as lajes L2 e L3 ensaiadas nesta pesquisa, devido à falta de confiabilidade em seus resultados.

Tabela 6.3 – Determinação de f_{sp}^* segundo a Equação 6.2

<table>
<thead>
<tr>
<th>Autor</th>
<th>Laje</th>
<th>V_f (%)</th>
<th>f_c (MPa)</th>
<th>Raiz (f_c)</th>
<th>f_{sp} (MPa)</th>
<th>$f_{sp}/Raiz(f_c)$</th>
<th>f_{sp}^* (MPa)</th>
<th>Dif. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holanda</td>
<td>L1</td>
<td>0</td>
<td>23,13</td>
<td>4,81</td>
<td>2,14</td>
<td>0,44</td>
<td>2,55</td>
<td>19,1</td>
</tr>
<tr>
<td>Azevedo</td>
<td>OSC.S1</td>
<td>0</td>
<td>43,73</td>
<td>6,61</td>
<td>3,76</td>
<td>0,57</td>
<td>3,50</td>
<td>6,8</td>
</tr>
<tr>
<td>Holanda</td>
<td>L4</td>
<td>0</td>
<td>56,98</td>
<td>7,55</td>
<td>3,98</td>
<td>0,53</td>
<td>4,00</td>
<td>0,5</td>
</tr>
<tr>
<td>Zambrana Vargas</td>
<td>L07</td>
<td>0</td>
<td>88,70</td>
<td>9,42</td>
<td>5,3</td>
<td>0,56</td>
<td>4,99</td>
<td>5,8</td>
</tr>
<tr>
<td>Holanda</td>
<td>L7</td>
<td>0,75</td>
<td>36,55</td>
<td>6,05</td>
<td>3,97</td>
<td>0,66</td>
<td>4,07</td>
<td>2,4</td>
</tr>
<tr>
<td>Azevedo</td>
<td>OSC.S2</td>
<td>0,75</td>
<td>46,42</td>
<td>6,81</td>
<td>4,4</td>
<td>0,65</td>
<td>4,58</td>
<td>4,1</td>
</tr>
<tr>
<td>Zambrana Vargas</td>
<td>L08</td>
<td>0,75</td>
<td>79,00</td>
<td>8,89</td>
<td>6,3</td>
<td>0,71</td>
<td>5,98</td>
<td>5,1</td>
</tr>
<tr>
<td>Holanda</td>
<td>L2</td>
<td>1</td>
<td>24,40</td>
<td>4,94</td>
<td>2,59</td>
<td>0,52</td>
<td>3,56</td>
<td>37,3</td>
</tr>
<tr>
<td>Holanda</td>
<td>L5</td>
<td>1</td>
<td>59,72</td>
<td>7,73</td>
<td>5,45</td>
<td>0,71</td>
<td>5,56</td>
<td>2,1</td>
</tr>
<tr>
<td>Azevedo</td>
<td>OSC.S3</td>
<td>1,5</td>
<td>30,80</td>
<td>5,55</td>
<td>4,89</td>
<td>0,88</td>
<td>4,52</td>
<td>7,5</td>
</tr>
<tr>
<td>Holanda</td>
<td>L8</td>
<td>1,5</td>
<td>46,08</td>
<td>6,79</td>
<td>5,17</td>
<td>0,76</td>
<td>5,53</td>
<td>7,0</td>
</tr>
<tr>
<td>Zambrana Vargas</td>
<td>L09</td>
<td>1,5</td>
<td>93,00</td>
<td>9,64</td>
<td>7,6</td>
<td>0,79</td>
<td>7,86</td>
<td>3,4</td>
</tr>
<tr>
<td>Holanda</td>
<td>L3</td>
<td>2</td>
<td>28,06</td>
<td>5,30</td>
<td>2,98</td>
<td>0,56</td>
<td>4,82</td>
<td>61,8</td>
</tr>
<tr>
<td>Holanda</td>
<td>L6</td>
<td>2</td>
<td>52,38</td>
<td>7,24</td>
<td>6,59</td>
<td>0,91</td>
<td>6,59</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Média 0,85
Desvio Padrão 0,14

O ACI 318 (1999) fornece a seguinte equação para determinação da resistência à punção de lajes sem armadura de punção e pilares de seção quadrada:

$$P_v = (0,3321\sqrt{f_c b_o d})/10 \quad (6.3)$$

onde:

f_c → resistência do concreto à compressão axial;

$b_o = 4(c+d)$ → perímetro onde ocorre a punção;
A análise teórica

\[d \rightarrow \text{altura útil da laje}; \]
\[c \rightarrow \text{largura do pilar}; \]
sendo \(f_c \) em \([\text{MPa}]\); \(b_o \), \(d \) em \([\text{cm}]\).

A equação do ACI 318 (1999) fornece valores de resistência bem menores do que os registrados em ensaios experimentais, embutindo um coeficiente de segurança elevado, eficaz para o caso de ruínas frágeis. Isso pode ser confirmado no gráfico da Figura 6.2.

Para levar em conta o efeito da adição de fibras de aço, introduz-se na Equação 6.3 o valor de \(f_{sp} \) obtido na Equação 6.2, de modo a se obter uma equação modificada do ACI 318 (1999). Nesta operação, são efetuadas as devidas adaptações para que não sejam alterados os fatores de ajuste e de ponderação da segurança, que se encontram embutidos no coeficiente 0,3321 da Equação 6.3. Desta forma, considerando um volume percentual de fibras \(V_f \) igual a zero, a Equação 6.4 torna-se igual à Equação 6.3.

\[
P_v = \left(0.19 V_f + 0.53\sqrt{f_c b_o d}\right)/10 = \left[0.6266(0.19 V_f + 0.53)\sqrt{f_c b_o d}/10\right] (6.4)
\]
sendo \(f_c \) em \([\text{MPa}]\); \(b_o \), \(d \) em \([\text{cm}]\) e \(V_f \) em \([\%]\).

No gráfico da Figura 6.2, a Equação 6.4 foi testada para os dados experimentais obtidos nesta pesquisa (inclusive as lajes L2 e L3), juntamente com alguns de ZAMBRANA VARGAS (1997) e de AZEVEDO (1999), utilizados como referência (Tabela 6.1 e Tabela 6.2). No gráfico observa-se que a Equação 6.4 oferece resposta razoável às tendências experimentais, à medida que se aumenta o volume de fibras adicionado.

No entanto, como a regressão linear sobre os dados experimentais resulta em uma reta que se aproxima da ordenada unitária, o nível de segurança que havia nas lajes sem fibras não é mantido. Portanto, considerando os dados particulares desta análise, um coeficiente empírico de ordem de 0,3102 deve ser aplicado para reduzir o efeito de \(V_f \) na Equação 6.4. Resulta então a Equação 6.5, denominada “Equação do ACI 318 Modificada”.

\[
P_v = 0.6266(0.19 \times 0.3102 V_f + 0.53)\sqrt{f_c b_o d} = 0.6266(0.06 V_f + 0.53)\sqrt{f_c b_o d} (6.5)
\]
Figura 6.2 – Aferição da Equação do ACI 318 Modificada para lajes (dados das lajes L2 e L3 eliminados)

No gráfico da Figura 6.3 observa-se a razão entre as resistências à punção da laje com fibras em relação à laje sem fibras, ambas normalizadas com base na equação do ACI 318 (1999), em função do volume de fibras adicionadas ao concreto. Verifica-se que a reta de regressão linear da Equação do ACI 318 Modificada (Equação 6.5) ficou bem próxima da reta de regressão dos resultados experimentais. Em HOLANDA & HANAI (2002) determinou-se uma equação semelhante a esta (Equação 6.6), a partir de um maior número de resultados experimentais, encontrados na revisão bibliográfica pertencente ao Capítulo 2 desta tese.

\[P_u = 0.65 (0.08 V_f + 0.51)^{0.5} f_{c'} b_y d \]

(6.6)
Figura 6.3 – Comparação dos resultados experimentais com os calculados pela Equação do ACI 318 Modificada para lajes (Equação 6.5)
6.2 Análise global das vigas

Neste item pretende-se analisar o efeito do aumento do volume específico de fibras de aço, na resistência ao cisalhamento das vigas estudadas, considerando-se como parâmetro de referência a resistência do concreto à tração, e a equação do ACI 318 (1999) para cálculo da resistência ao cisalhamento de vigas sem estribos, a exemplo do que foi feito para as lajes.

A resistência do concreto à tração é um dos parâmetros que têm grande influência também na resistência de vigas ao cisalhamento. No entanto, na maioria das normas técnicas de projeto, ele se apresenta de forma indireta nas expressões de cálculo, as quais incluem a resistência do concreto à compressão.

Conforme visto no item anterior, a resistência do concreto à compressão pode ser relacionada com sua resistência à tração por compressão diametral, segundo o ACI 318 (1999), como mostra a Equação 6.1.

Para relacionar a resistência à tração por compressão diametral com a resistência à compressão, no caso de concreto com fibras, efetuou-se uma regressão linear (Figura 6.4) dos resultados experimentais das vigas ensaiadas nesta pesquisa (Tabela 6.4). Obteve-se a Equação 6.7, que relaciona a resistência média à tração com a resistência média à compressão e com o volume percentual de fibras (V_f). Para essa equação assumiu-se uma forma similar à Equação 6.1.

$$f_{sp} = (0,15V_f + 0,51)\sqrt{f_c}$$

sendo f_{sp}, f_c em [MPa] e V_f em [%].

Para traçar o gráfico da Figura 6.4, foram eliminadas as vigas V6A e V6B, devido à falta de confiabilidade em seus resultados.
Tabela 6.4 – Determinação de f_{sp}^* segundo a Equação 6.5

<table>
<thead>
<tr>
<th>Viga</th>
<th>V_1 (%)</th>
<th>f_c (MPa)</th>
<th>Raiz (f_c)</th>
<th>f_{sp} (MPa)</th>
<th>$f_{sp}/Raiz(f_c)$</th>
<th>f_{sp}^* (MPa)</th>
<th>Dif. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1A</td>
<td>0</td>
<td>23,13</td>
<td>4,81</td>
<td>2,14</td>
<td>0,44</td>
<td>2,45</td>
<td>14,6</td>
</tr>
<tr>
<td>V1B</td>
<td>0</td>
<td>23,13</td>
<td>4,81</td>
<td>2,14</td>
<td>0,44</td>
<td>2,45</td>
<td>14,6</td>
</tr>
<tr>
<td>V4A</td>
<td>0</td>
<td>56,98</td>
<td>7,55</td>
<td>3,81</td>
<td>0,50</td>
<td>3,85</td>
<td>1,0</td>
</tr>
<tr>
<td>V4B</td>
<td>0</td>
<td>56,98</td>
<td>7,55</td>
<td>3,81</td>
<td>0,50</td>
<td>3,85</td>
<td>1,0</td>
</tr>
<tr>
<td>V7A</td>
<td>0</td>
<td>56,98</td>
<td>7,55</td>
<td>3,81</td>
<td>0,50</td>
<td>3,85</td>
<td>1,0</td>
</tr>
<tr>
<td>V7B</td>
<td>0</td>
<td>56,98</td>
<td>7,55</td>
<td>3,81</td>
<td>0,50</td>
<td>3,85</td>
<td>1,0</td>
</tr>
<tr>
<td>V12A</td>
<td>0</td>
<td>75,27</td>
<td>8,68</td>
<td>4,46</td>
<td>0,51</td>
<td>4,42</td>
<td>0,8</td>
</tr>
<tr>
<td>V12B</td>
<td>0</td>
<td>75,27</td>
<td>8,68</td>
<td>4,46</td>
<td>0,51</td>
<td>4,42</td>
<td>0,8</td>
</tr>
<tr>
<td>V10A</td>
<td>0,75</td>
<td>36,55</td>
<td>6,05</td>
<td>3,97</td>
<td>0,66</td>
<td>3,76</td>
<td>5,2</td>
</tr>
<tr>
<td>V10B</td>
<td>0,75</td>
<td>36,55</td>
<td>6,05</td>
<td>3,97</td>
<td>0,66</td>
<td>3,76</td>
<td>5,2</td>
</tr>
<tr>
<td>V13A</td>
<td>0,75</td>
<td>73,50</td>
<td>8,57</td>
<td>5,65</td>
<td>0,66</td>
<td>5,34</td>
<td>5,5</td>
</tr>
<tr>
<td>V13B</td>
<td>0,75</td>
<td>73,50</td>
<td>8,57</td>
<td>5,65</td>
<td>0,66</td>
<td>5,34</td>
<td>5,5</td>
</tr>
<tr>
<td>V2A</td>
<td>1</td>
<td>24,40</td>
<td>4,94</td>
<td>2,59</td>
<td>0,52</td>
<td>3,26</td>
<td>25,9</td>
</tr>
<tr>
<td>V2B</td>
<td>1</td>
<td>24,40</td>
<td>4,94</td>
<td>2,59</td>
<td>0,52</td>
<td>3,26</td>
<td>25,9</td>
</tr>
<tr>
<td>V5A</td>
<td>1</td>
<td>59,72</td>
<td>7,73</td>
<td>5,45</td>
<td>0,71</td>
<td>5,10</td>
<td>6,4</td>
</tr>
<tr>
<td>V5B</td>
<td>1</td>
<td>59,72</td>
<td>7,73</td>
<td>5,45</td>
<td>0,71</td>
<td>5,10</td>
<td>6,4</td>
</tr>
<tr>
<td>V8A</td>
<td>1</td>
<td>59,72</td>
<td>7,73</td>
<td>5,45</td>
<td>0,71</td>
<td>5,10</td>
<td>6,4</td>
</tr>
<tr>
<td>V8B</td>
<td>1</td>
<td>59,72</td>
<td>7,73</td>
<td>5,45</td>
<td>0,71</td>
<td>5,10</td>
<td>6,4</td>
</tr>
<tr>
<td>V11A</td>
<td>1,5</td>
<td>46,08</td>
<td>6,79</td>
<td>5,17</td>
<td>0,76</td>
<td>4,99</td>
<td>3,5</td>
</tr>
<tr>
<td>V11B</td>
<td>1,5</td>
<td>46,08</td>
<td>6,79</td>
<td>5,17</td>
<td>0,76</td>
<td>4,99</td>
<td>3,5</td>
</tr>
<tr>
<td>V14A</td>
<td>1,5</td>
<td>73,10</td>
<td>8,55</td>
<td>7,96</td>
<td>0,93</td>
<td>6,28</td>
<td>21,1</td>
</tr>
<tr>
<td>V14B</td>
<td>1,5</td>
<td>73,10</td>
<td>8,55</td>
<td>7,96</td>
<td>0,93</td>
<td>6,28</td>
<td>21,1</td>
</tr>
<tr>
<td>V3A</td>
<td>2</td>
<td>28,06</td>
<td>5,30</td>
<td>2,98</td>
<td>0,56</td>
<td>4,29</td>
<td>44,0</td>
</tr>
<tr>
<td>V3B</td>
<td>2</td>
<td>28,06</td>
<td>5,30</td>
<td>2,98</td>
<td>0,56</td>
<td>4,29</td>
<td>44,0</td>
</tr>
<tr>
<td>V6A</td>
<td>2</td>
<td>52,38</td>
<td>7,24</td>
<td>6,56</td>
<td>0,91</td>
<td>5,86</td>
<td>10,6</td>
</tr>
<tr>
<td>V6B</td>
<td>2</td>
<td>52,38</td>
<td>7,24</td>
<td>6,56</td>
<td>0,91</td>
<td>5,86</td>
<td>10,6</td>
</tr>
<tr>
<td>V9A</td>
<td>2</td>
<td>52,38</td>
<td>7,24</td>
<td>6,56</td>
<td>0,91</td>
<td>5,86</td>
<td>10,6</td>
</tr>
<tr>
<td>V9B</td>
<td>2</td>
<td>52,38</td>
<td>7,24</td>
<td>6,56</td>
<td>0,91</td>
<td>5,86</td>
<td>10,6</td>
</tr>
</tbody>
</table>

Média: 0,63
Desvio Padrão: 0,16
O ACI 318 (1999) fornece a seguinte equação para determinação do esforço cortante último de vigas sem estribos:

\[V_u = (0.166 \sqrt{f_c} b d)/10 \] \hspace{1cm} (6.8)

onde:
- \(f_c \rightarrow \) resistência do concreto à compressão axial;
- \(d \rightarrow \) altura útil da laje;
- \(b \rightarrow \) largura da viga;

sendo \(f_c \) em [MPa]; \(b, d \) em [cm].

Para levar em conta o efeito da adição de fibras de aço, introduz-se na Equação 6.8 o valor de \(f_{sp} \) obtido na Equação 6.7, de modo a se obter uma equação modificada do ACI 318 (1999). Nessa operação são efetuadas as devidas adaptações para que não sejam alterados os fatores de ajuste e de ponderação da segurança, que se encontram embutidos no coeficiente 0,166 da Equação 6.8:

\[V_u = \left[\frac{0.166}{0.51} \right] (0.15 V_t + 0.51) \sqrt{f_c} b d)/10 = [0.3255 (0.15 V_t + 0.51) \sqrt{f_c} b d]/10 \] \hspace{1cm} (6.9)

sendo \(f_c \) em [MPa]; \(b, d \) em [cm] e \(V_t \) em [%].

As resistências ao cisalhamento das vigas, obtidas utilizando-se a Equação 6.9, apresentam correlações razoáveis com os resultados experimentais, conforme
mostra o gráfico da Figura 6.5. Neste gráfico a *Equação do ACI Modificada* (Equação 6.9) foi aplicada a todas as vigas ensaiadas, inclusive as vigas V6A e V6B. Observa-se que a equação testada oferece resposta razoável às tendências experimentais, pois a regressão linear resulta numa reta quase paralela ao eixo das abscissas, com valores em geral a favor da segurança.

![Figura 6.5 – Aferição da Equação do ACI 318 Modificada para vigas (todos os dados incluídos)](image)

No gráfico da Figura 6.6 observa-se a razão entre as resistências ao cisalhamento da viga com fibras em relação à viga sem fibras, ambas normalizadas com base na equação do ACI 318 (1999), em função do volume de fibras adicionadas ao concreto. Verifica-se que a reta de regressão linear da *Equação do ACI 318 Modificada* (Equação 6.9) ficou bem próxima da reta de regressão dos resultados experimentais das vigas ensaiadas, e ambas expressam o aumento da resistência à punção com o volume de fibras adicionado.
Figura 6.6 – Comparação dos resultados experimentais com os calculados pela Equação do ACI 318 Modificada para vigas (Equação 6.9)
6.3 Modelo Viga-Arco Modificado

Neste item pretende-se contribuir com o aperfeiçoamento de um modelo mecânico existente que explica a transferência de força na ligação laje-pilar, o “Bond Model” de ALEXANDER & SIMMONDS (1991), incluindo a parcela de contribuição das fibras de aço adicionadas ao concreto.

Conforme foi visto no Capítulo 3, o Modelo Viga-Arco (“Bond Model”) combina a ação de arco na direção radial com o conceito de limitação da tensão tangencial em determinada seção crítica (ação de viga). A combinação desses dois mecanismos é responsável pela transferência de esforço cortante na ligação de uma laje, armada em duas direções, com um pilar.

Para incluir a contribuição das fibras de aço no modelo, inicialmente foram feitos alguns ensaios-piloto de vigas (Ensaios-piloto Série 2), nos quais se procurou observar se as fibras interferem na resistência ao cisalhamento e na ductilidade, quando o mecanismo predominante de transferência de força cortante é a ação de arco. Esses ensaios encontram-se descritos no item 4.2 do Capítulo 4. Os ensaios vieram a confirmar que a adição de fibras não melhora a resistência ao cisalhamento, nem a ductilidade das vigas, quando predomina a ação de arco, o que já era esperado.

A partir da investigação experimental mencionada anteriormente, concluiu-se que contribuição das fibras deve ser colocada na parcela proveniente da ação de viga, que ocorre na direção perpendicular às faixas radiais.

6.3.1 Resistência

Na ação de viga, o esforço cortante é resultante de uma força de tração variável, atuando na armadura longitudinal tracionada, com o braço de momento interno constante. Nesse mecanismo é importante que haja forças de aderência entre a armadura e o concreto.

A tensão de cisalhamento proveniente da ação de viga pode ser representada como uma tensão crítica de cisalhamento, se limitada pela resistência de aderência da armadura de flexão disposta perpendicularmente às faixas radiais.

No Modelo Viga-Arco, a transferência de força na ligação laje-pilar está relacionada com o gradiente de força na armadura, que por sua vez está
relacionado com a aderência entre a armadura e o concreto. A adição de fibras de aço ao concreto afeta a resistência à punção das ligações laje-pilar, uma vez que aumenta a aderência da armadura de flexão ao concreto.

Segundo ALEXANDER & SIMMONDS (1991), a resistência de aderência da armadura deve ser determinada com base na resistência do concreto não confinado à tração por compressão diametral.

A resistência do concreto à tração, representada de forma indireta pela resistência à compressão nas equações sugeridas pelas normas técnicas, é um parâmetro significativo que permite quantificar o efeito da adição de fibras de aço.

Conforme visto anteriormente, a resistência do concreto à compressão pode ser relacionada com sua resistência à tração por compressão diametral, segundo o ACI 318 (1999), como mostra a Equação 6.1.

Para relacionar a resistência à tração por compressão diametral com a resistência à compressão, no caso de concreto com fibras, efetuou-se uma regressão linear dos resultados experimentais das vigas ensaiadas nesta pesquisa. Obteve-se a Equação 6.7, que relaciona a resistência média à tração com a resistência média à compressão e com o volume percentual de fibras (Vf).

ALEXANDER & SIMMONDS (1991) sugerem que se determine a tensão tangencial transmitida dos quadrantes para as faixas radiais, por ação de viga, por meio de equações normativas de resistência de vigas ao cisalhamento (uma única direção). Os autores recomendam a utilização da equação do ACI 318 (1999), para o cálculo da resistência ao cisalhamento das faixas radiais:

\[\tau = (0,166 \sqrt{f_c})/10 \] \hspace{1cm} (6.10)

sendo \(f_c \) dado em [MPa].

Para levar em conta o efeito da adição de fibras de aço, introduz-se na Equação 6.10 o valor de \(f_{sp} \) obtido na Equação 6.7, de modo a se obter uma equação modificada do ACI 318 (1999). Nessa operação são efetuadas as devidas adaptações para que não sejam alterados os fatores de ajuste e de ponderação da segurança, que se encontram embutidos no coeficiente 0,166 da Equação 6.10:

\[\tau = \left[\frac{0,166}{0,51} (0,15 V_f + 0,51) \sqrt{f_c} \right]/10 = [0,3255 (0,15 V_f + 0,51) \sqrt{f_c}]/10 \] \hspace{1cm} (6.11)

sendo \(f_c \) dado em [MPa] e \(V_f \) em [%].
As resistências ao cisalhamento das vigas, obtidas por meio da Equação 6.9, apresentam boas correlações com os resultados experimentais, conforme mostra o gráfico da Figura 6.5. Retirando do conjunto de dados experimentais, os resultados de resistência ao cisalhamento das vigas V6A e V6B, obtém-se uma curva semelhante, porém com dados mais confiáveis (Figura 6.7).

![Gráfico da Figura 6.7](attachment:Gráfico.png)

Figura 6.7 – Aferição da Equação do ACI 318 Modificada para vigas (dados das vigas V6A e V6B eliminados)

O esforço cortante atuante nas vigas, agora obtido teoricamente por intermédio da Equação 6.11, é considerado como sendo o esforço cortante que os quadrantes de laje transferem às faixas radiais por meio de ação de viga. Isto pode ser admitido porque lajes e vigas possuem as mesmas características (altura útil, taxa de armadura, resistência do concreto à compressão, taxa de fibras etc.) e foi verificado experimentalmente que nas vigas ocorreu de fato ação de viga.

Na Tabela 6.5 encontra-se parte da aplicação do Modelo Viga-Arco Modificado, com a utilização da Equação 6.7, para determinação de f_{sp}, e das Equações 6.11 e 3.144 para a determinação de τ e de ω respectivamente. Nas vigas analisadas, a largura b é igual a 12 cm e a altura útil d é igual a 8,5 cm.
Tabela 6.5 – Aplicação do Modelo Viga-Arco Modificado (parte I)

<table>
<thead>
<tr>
<th>Viga</th>
<th>Vf (%)</th>
<th>fc (MPa)</th>
<th>fsp (MPa)</th>
<th>τ (kN/cm²)</th>
<th>Vu(teo) (kN)</th>
<th>Fu(teo) (kN)</th>
<th>ω (kN/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>0</td>
<td>23,13</td>
<td>2,45</td>
<td>0,080</td>
<td>8,13</td>
<td>16,26</td>
<td>0,68</td>
</tr>
<tr>
<td>V4</td>
<td>0</td>
<td>56,98</td>
<td>3,85</td>
<td>0,125</td>
<td>12,76</td>
<td>25,52</td>
<td>1,06</td>
</tr>
<tr>
<td>V10</td>
<td>0,75</td>
<td>36,55</td>
<td>3,76</td>
<td>0,122</td>
<td>12,48</td>
<td>24,95</td>
<td>1,04</td>
</tr>
<tr>
<td>V2</td>
<td>1</td>
<td>24,40</td>
<td>3,26</td>
<td>0,106</td>
<td>10,81</td>
<td>21,61</td>
<td>0,90</td>
</tr>
<tr>
<td>V5</td>
<td>1</td>
<td>59,72</td>
<td>5,10</td>
<td>0,166</td>
<td>16,91</td>
<td>33,82</td>
<td>1,41</td>
</tr>
<tr>
<td>V11</td>
<td>1,5</td>
<td>46,08</td>
<td>4,99</td>
<td>0,162</td>
<td>16,54</td>
<td>33,08</td>
<td>1,38</td>
</tr>
<tr>
<td>V3</td>
<td>2</td>
<td>28,06</td>
<td>4,29</td>
<td>0,139</td>
<td>14,22</td>
<td>28,45</td>
<td>1,19</td>
</tr>
<tr>
<td>V6</td>
<td>2</td>
<td>52,38</td>
<td>5,86</td>
<td>0,191</td>
<td>19,43</td>
<td>38,87</td>
<td>1,62</td>
</tr>
</tbody>
</table>

Na Tabela 6.6 encontra-se outra parte da aplicação do Modelo Viga-Arco Modificado, com a utilização da Equação 3.132 para determinação de j, e das Equações 3.142 e 3.145 para a determinação de Ms e de Pu respectivamente. Nas lajes analisadas, a largura do pilar quadrado c é igual a 8 cm, a altura útil média d é igual a 8,5 cm e a tensão de escoamento da armadura de flexão tracionada fy é igual a 548,63 MPa.

Tabela 6.6 – Aplicação do Modelo Viga-Arco Modificado (parte II)

<table>
<thead>
<tr>
<th>Laje</th>
<th>Vf (%)</th>
<th>fc (MPa)</th>
<th>j</th>
<th>Ms (kN.cm)</th>
<th>τ (kN/cm)</th>
<th>Pu(calc) (kN)</th>
<th>Pu(exp) (kN)</th>
<th>Pu(exp) / Pu(calc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>0</td>
<td>23,13</td>
<td>0,78</td>
<td>388,80</td>
<td>0,68</td>
<td>129,85</td>
<td>137,20</td>
<td>1,06</td>
</tr>
<tr>
<td>L4</td>
<td>0</td>
<td>56,98</td>
<td>0,91</td>
<td>453,59</td>
<td>1,06</td>
<td>175,71</td>
<td>192,86</td>
<td>1,10</td>
</tr>
<tr>
<td>L7</td>
<td>0,75</td>
<td>36,55</td>
<td>0,86</td>
<td>428,84</td>
<td>1,04</td>
<td>168,92</td>
<td>182,85</td>
<td>1,08</td>
</tr>
<tr>
<td>L2</td>
<td>1</td>
<td>24,40</td>
<td>0,79</td>
<td>394,48</td>
<td>0,90</td>
<td>150,79</td>
<td>139,55</td>
<td>0,93</td>
</tr>
<tr>
<td>L5</td>
<td>1</td>
<td>59,72</td>
<td>0,92</td>
<td>455,62</td>
<td>1,41</td>
<td>202,70</td>
<td>215,14</td>
<td>1,06</td>
</tr>
<tr>
<td>L8</td>
<td>1,5</td>
<td>46,08</td>
<td>0,89</td>
<td>443,12</td>
<td>1,38</td>
<td>197,71</td>
<td>210,90</td>
<td>1,07</td>
</tr>
<tr>
<td>L3</td>
<td>2</td>
<td>28,06</td>
<td>0,82</td>
<td>407,96</td>
<td>1,19</td>
<td>175,92</td>
<td>163,62</td>
<td>0,93</td>
</tr>
<tr>
<td>L6</td>
<td>2</td>
<td>52,38</td>
<td>0,90</td>
<td>449,70</td>
<td>1,62</td>
<td>215,89</td>
<td>236,17</td>
<td>1,09</td>
</tr>
</tbody>
</table>

A média dos valores Pu(exp)/Pu(calc) utilizando o ωACI(mod) foi de 1,06, enquanto que no Modelo Viga-Arco de ALEXANDER & SIMMONDS (1991), utilizando o ωACI, a média dos valores Pu(exp)/Pu(calc) foi de 1,29. O coeficiente de variação encontrado, utilizando-se o Modelo Viga-Arco Modificado, foi de 15,1%, enquanto que o obtido com o Modelo Viga-Arco foi de 12,3%.
Os valores $P_u(\text{exp})/P_u(\text{calc})$ foram plotados no gráfico da Figura 6.8, para diversos teores de fibras. Verifica-se que a reta de regressão linear é quase paralela ao eixo das abscissas e se aproximou muito da ordenada 1, estando na maioria dos casos a favor da segurança.

No gráfico da Figura 6.9, os valores $P_u(\text{exp})/P_u(\text{calc})$ foram plotados para todas as lajes ensaiadas nesta pesquisa, com exceção das lajes L2 e L3. Verifica-se que a reta de regressão linear é praticamente paralela ao eixo das abscissas e se aproximou muito da ordenada 1, estando sempre a favor da segurança. Isso significa que o Modelo Viga-Arco Modificado continua sendo uma solução de limite inferior para a resistência de lajes à punção, e fornece boas respostas às tendências experimentais.
Roteiro para aplicação do *Modelo Viga-Arco Modificado*

1) Calcula-se o momento resistente da faixa radial.

\[M_s = \rho \cdot f_y \cdot c \cdot d^2 \left(1 - \frac{\rho \cdot f_y}{17 \cdot f_c} \right) \] \[\text{[kN.cm]} \] \((6.12) \)

2) Calcula-se a resistência ao cisalhamento das faixas radiais pela equação do *ACI 318 Modificada*.

\[\tau = \frac{[0.3255 \times (0.15 \cdot V_r + 0.51) \cdot f_c^2]}{10} \] \[\text{[kN/cm]} \] \((6.13) \)

3) Calcula-se o máximo esforço cortante distribuído linearmente, atuante em cada face lateral de uma faixa radial, que pode ser transmitido dos quadrantes adjacentes a ela (solução de limite inferior).

\[\omega = d \cdot \tau \] \[\text{[kN/cm]} \] \((6.14) \)

4) Calcula-se a resistência da ligação à punção, que é a soma da resistência ao cisalhamento das quatro faixas radiais.

\[P_u = 8 \cdot \sqrt{M_s} \cdot \omega \] \[\text{[kN]} \] \((6.15) \)
Substituindo a Equação 6.13 na 6.14, e depois substituindo as Equações 6.12 e 6.14 na Equação 6.15, tem-se:

\[P_u = 8 \left(\frac{f_y}{10} \right)^{1/2} \left[1 - \frac{\rho f_y}{17 f_c} \right] \cdot d \cdot \left[0,3255 \left(0,15 V_f + 0,51 \sqrt{f_c} \right) \right] / 10 \] (6.16)

sendo \(f_y \) e \(f_c \) dados em [MPa], \(c \) e \(d \) em [cm], \(V_f \) em [%] e \(\rho \) adimensional.

Simplificando a Equação 6.16 obtém-se a seguinte expressão para o cálculo da carga de ruína à punção pelo Modelo Viga-Arco Modificado:

\[P_u = 0,0035 d \sqrt{c d f_c \omega (170 - \omega)} k_f \] (6.17)

onde:

\[\omega = \frac{\rho f_y}{f_c} \] (6.18)

\[k_f = (0,15 V_f + 0,51 f_c) \] (6.19)

sendo \(f_y \) e \(f_c \) dados em [MPa], \(c \) e \(d \) dados em [cm], \(\rho \) e \(V_f \) dados em [%].

É interessante observar que os parâmetros da Equação 6.19 dependem exclusivamente de dados experimentais das lajes, não dependendo de ensaios específicos de vigas. Sendo assim, o novo modelo poderá ser aplicado às demais lajes-cogumelo ensaiadas pelos autores citados na revisão bibliográfica.

No gráfico da Figura 6.10, tem-se a aplicação do Modelo Viga-Arco Modificado (Equação 6.19) às lajes ensaiadas pelos diversos autores citados no Capítulo 2. Verifica-se que a reta de regressão linear é praticamente paralela ao eixo das abscissas e que se aproximou muito da ordenada 1, estando sempre a favor da segurança.

No gráfico da Figura 6.11, o Modelo Viga-Arco Modificado foi aplicado a todos os resultados experimentais encontrados na revisão bibliográfica, mais os resultados obtidos nesta pesquisa. No gráfico observa-se que a dispersão dos resultados experimentais em relação à reta de regressão linear é muito pequena. Verifica-se que, para um volume de fibras de 2% (máximo para se conseguir trabalhabilidade adequada), o aumento de resistência à punção, em relação à laje sem fibras, chega a aproximadamente 25%.
Figura 6.10 – Aferição do Modelo Viga-Arco Modificado (toda a bibliografia consultada)
Figura 6.11 – Aplicação da equação do Modelo Viga-Arco Modificado para todos os resultados experimentais disponíveis.
É importante destacar as limitações do modelo teórico. Primeiramente, a Equação 6.17 não permite fazer distinções entre diferentes geometrias de fibras ou diferentes relações de aspecto. Além disso, seria ideal que se encontrassem ensaios mais confiáveis para a determinação da resistência à tração por compressão diametral. Nos ensaios padronizados ocorre um esmagamento inicial do concreto, provocado pela prensa, fazendo dissipar energia. Isso é ainda mais influenciável no caso do concreto com fibras. Provavelmente, estudos sobre a Mecânica da Fratura forneceriam parâmetros melhores para a ruptura por separação.

6.3.2 Ductilidade

Conforme visto na literatura, o aumento de resistência ao cisalhamento devido à presença das fibras é função da resistência do concreto com fibras à tração pós-fissuração. Segundo LIM & OH (1999):

\[V_{fb} = \sigma_{cu} b (h - x) \]
(6.20)

onde:

\[\sigma_{cu} = 0.5 \tau_{fu} V_t \frac{\ell}{D} \]
(6.21)

sendo \(\sigma_{cu} \) a resistência do compósito à tração pós-fissuração e \(\tau_{fu} \) a resistência de aderência média na interface fibra-matriz (Equação 2.3).

E de acordo com SWAMY et al. (1993):

\[V_{fb} = 0.9 \sigma_{cu} b d \]
(6.22)

onde \(\sigma_{cu} \) é a resistência do compósito à tração pós-fissuração.

No modelo de SWAMY et al. (1993), quando o comprimento da fibra for menor do que o comprimento crítico \((\ell_f < \ell_c) \), caso característico de \textit{arrancamento das fibras}, tem-se que:

\[\sigma_{cu} = 0.41 \tau_{fu} \frac{\ell}{D} V_t \]
(6.23)

e, quando o comprimento da fibra for maior do que o comprimento crítico \((\ell_f > \ell_c) \), caso característico de \textit{ruptura das fibras}, tem-se que:
\[
\sigma_{cu} = 0,41 \left(1 - \frac{\sigma_{fu}}{4\tau \cdot \ell}\right) \sigma_{fu} V_f
\]
(6.24)

onde \(\sigma_{fu}\) é a resistência última da fibra à tração.

A resistência do compósito à tração pós-fissuração está relacionada com as componentes verticais da força de arrancamento das fibras ao longo da fissura inclinada (Figura 6.12). Esse termo pode ser considerado um parâmetro de ductilidade das vigas, uma vez que está relacionado com o arrancamento das fibras.

![Figura 6.12 – Contribuição das fibras no cisalhamento (SWAMY et al., 1993)](image)

Isolando o termo \(\sigma_{cu}\) nas Equações 6.20 e 6.22, obtém a parcela da tensão de cisalhamento atuante em vigas devidamente exclusivamente à contribuição das fibras. Por exemplo, fazendo isto na Equação 6.22, tem-se que:

\[
\tau_{fib} = \sigma_{cu} = \frac{V_{fb}}{0,9 \cdot b \cdot d}
\]
(6.25)

A parcela da tensão tangencial obtida na Equação 6.25 está embutida nos valores de \(\tau\) da quinta coluna da Tabela 6.5, que representam a contribuição de todos os mecanismos alternativos resistentes ao cisalhamento, inclusive o efeito das fibras.

Isolando, da tensão tangencial total (Equação 6.11), a parcela correspondente apenas à contribuição das fibras, tem-se que o parâmetro de ductilidade das vigas pode ser expresso pela Equação 6.26.

\[
\sigma_{cu} = \tau_{fib} = 4882 \times 10^6 V_f \cdot \sqrt{f_c}
\]
(6.26)

sendo \(f_c\) dado em [MPa] e \(V_f\) em [%].
Já que o esforço cortante atuante nas vigas é considerado como sendo o esforço cortante que os quadrantes de laje transferem às faixas radiais por meio de ação de viga, pode-se considerar a ductilidade da laje medida pelo parâmetro de ductilidade das vigas σ_{cu}. Conforme as Equações 6.21, 6.23 e 6.24, esse índice depende fortemente do volume de fibras e da relação de aspecto das fibras, dentre outras variáveis.

Na Tabela 6.7 encontram-se calculados os índices de ductilidade de lajes e vigas análogas pelo Modelo Viga-Arco Modificado.

Tabela 6.7 – Índice de ductilidade de lajes e vigas análogas

<table>
<thead>
<tr>
<th>Modelo</th>
<th>V_i (%)</th>
<th>ℓ/D</th>
<th>f_c (MPa)</th>
<th>σ_{cu} (kN/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 V1A/V1B</td>
<td>0</td>
<td>54,5</td>
<td>23,13</td>
<td>--</td>
</tr>
<tr>
<td>L2 V2A/V2B</td>
<td>1</td>
<td>54,5</td>
<td>24,40</td>
<td>0,0241</td>
</tr>
<tr>
<td>L3 V3A/V3B</td>
<td>2</td>
<td>54,5</td>
<td>28,06</td>
<td>0,0517</td>
</tr>
<tr>
<td>L4 V4A/V4B</td>
<td>0</td>
<td>54,5</td>
<td>56,98</td>
<td>--</td>
</tr>
<tr>
<td>L5 V5A/V5B</td>
<td>1</td>
<td>54,5</td>
<td>59,72</td>
<td>0,0377</td>
</tr>
<tr>
<td>L6 V6A/V6B</td>
<td>2</td>
<td>54,5</td>
<td>52,38</td>
<td>0,0707</td>
</tr>
<tr>
<td>L7 V10A/V10B</td>
<td>0,75</td>
<td>48</td>
<td>36,55</td>
<td>0,0221</td>
</tr>
<tr>
<td>L8 V11A/V11B</td>
<td>1,5</td>
<td>48</td>
<td>46,08</td>
<td>0,0491</td>
</tr>
</tbody>
</table>

Os índices foram dados em [kN/cm²], da mesma forma como são fornecidos os índices da norma japonesa JSCE-SF4/84.

Da observação dos resultados apresentados na Tabela 6.7, conclui-se que os maiores índices de ductilidade foram obtidos utilizando-se concreto de alta resistência (Série 2). A ductilidade aumentou à medida que o volume de fibras foi aumentado, dentro de uma mesma série de modelos. A diferença de relação de aspecto, nesse caso, pouco alterou a variação dos índices.

O gráfico da Figura 6.13 ilustra o aumento dos índices de ductilidade, à medida que aumenta o volume de fibras adicionado ao concreto.
Figura 6.13 – Índices de ductilidade calculados a partir do *Modelo Viga-Arco Modificado*
7 Conclusões

Em linhas gerais, considerando os objetivos propostos para esta tese, pode-se dizer que todos foram cumpridos, ou seja:

a) foram produzidos novos dados experimentais e foram re-estruturados os dados existentes (AZEVEDO, 1999 e ZAMBRANA VARGAS, 1997) sobre a resistência e a ductilidade de ligações laje-pilar em lajes-cogumelo de concreto armado reforçado com fibras de aço;

b) analisaram-se e estabeleceram-se conclusões sobre a similaridade de comportamento estrutural de lajes de concreto com fibras, sujeitas à punção, e vigas análogas submetidas à força cortante;

c) estabeleceram-se algumas correlações entre a resistência e a ductilidade de lajes-cogumelo à punção, com a resistência e a ductilidade de vigas prismáticas ao cisalhamento;

d) efetuou-se uma análise da adaptabilidade de modelos mecânicos teóricos existentes sobre a punção em lajes, com vistas à consideração do efeito da adição de fibras de aço ao concreto;

e) estabeleceram-se, na medida do possível, método e critérios de seleção do tipo, volume e outras características das fibras de aço a serem usadas em ligações laje-pilar, por meio de indicadores obtidos em ensaios mais simples, de cisalhamento em prismas;

f) estabeleceram-se critérios quantitativos para avaliação da ductilidade das ligações laje-pilar.
Em termos de contribuição original da tese, pode-se dizer que foram duas essencialmente:

- a análise experimental das similaridades de comportamento estrutural entre lajes submetidas à punção e vigas submetidas ao cisalhamento;
- a adaptabilidade de modelos teóricos existentes sobre cisalhamento em vigas sem estribos e punção em ligações laje-pilar interno, sem armadura de punção, considerando o efeito da adição de fibras de aço ao concreto.

Dentre as conclusões específicas da parte experimental do trabalho, algumas podem ser realçadas:

- Em todas as séries de ensaios observou-se, tanto nas lajes como nas vigas em linhas gerais, que a resistência e a ductilidade aumentaram com o aumento do volume de fibras de aço adicionadas ao concreto.
- As vigas sem fibras rompiam bruscamente por cisalhamento, após a formação da fissura inclinada.
- As vigas V5A, V5B, V9B, V11B, V13A e V14A, reforçadas com elevados teores de fibras, tiveram a ruptura por cisalhamento concomitante com o escoamento da armadura de flexão tracionada, mostrando que esta armadura foi mais solicitada do que no caso das vigas de concreto sem fibras.
- Nas vigas V6, reforçadas com 2% de fibras ZP-305 DRAMIX, houve problema de efeito de escala, e a resistência e a ductilidade esperadas não foram alcançadas. Isso não aconteceu nas vigas V9, de mesmo \(f_c \) e mesma taxa de fibras, porém de dimensões maiores.
- Todas as lajes foram dimensionadas para romperem por punção, fato que realmente ocorreu. Nas lajes reforçadas com fibras de aço, existiu uma tendência da carga de ruína se aproximar da estimada para ruptura à flexão, à medida que se incorporava um maior volume de fibras ao concreto. Isso significa que a introdução de fibras de aço contribuiu na ductilidade da ruptura. O melhor resultado desta análise foi obtido na Série 2, utilizando-se concreto de alta resistência e 2% de fibras de aço.
- Tanto lajes como vigas reforçadas com fibras de aço apresentaram uma ruína bem mais dúctil, com maior solicitação da armadura de flexão, aparecendo inclusive fissuras de flexão na região de momento fletor máximo.
Conclusões

- Em todas as vigas das Séries 1 a 4, a ruptura foi por arrancamento das fibras, enquanto que nas vigas da Série 5 houve ruptura das fibras. O modelo teórico de SWAMY et al. (1993), para previsão da carga última de vigas reforçadas com fibras, não se aplicou bem na maioria dos casos.

- Na Série 4 foi possível concluir que a fibra RC 65/30 BN, de relação de aspecto 66,7, produziu maior ductilidade nas lajes do que a fibra RL 45/50 BN, de relação de aspecto 48. A alteração da relação de aspecto pouco influenciou na resistência dos elementos estruturais.

- A fibra HSCF-25 HAREX, utilizada na Série 5, não proporcionou elevados índices de tenacidade à flexão, nos compósitos ensaiados.

- Em todas as séries houve um aumento da carga última proporcional ao volume de fibras empregado. Nas séries 1 e 2, onde foi utilizado como agregado o pedrisco, o segundo trecho das curvas apresentou maior inclinação do que o primeiro, indicando um maior crescimento da resistência quando adicionados maiores volumes de fibras. Já na Série 4, onde foi utilizada brita 1, o maior aumento de resistência ocorreu até o volume de 0,75%, depois o aumento foi menor.

- Observou-se ainda que a maior resistência normalizada à punção das lajes sem fibras foi a da laje da Série 1, de \(f_{ck} \approx 25 \text{ MPa} \), seguida pela laje da Série 4, de \(f_{ck} \approx 40 \text{ Mpa} \), e por último a da Série 2, de \(f_{ck} \approx 60 \text{ MPa} \), devido à fragilidade do concreto de alta resistência. Adicionando-se as fibras, percebe-se uma inversão dessa ordem para teores acima de 1,5%, ou seja, a maior resistência à punção foi obtida pela laje da Série 2, seguida da laje da Série 4, e por último a laje da Série 1.

- As fibras atuam melhor em concreto de alta resistência.

- Na maioria dos casos observou-se uma similaridade de comportamento estrutural entre lajes e vigas análogas e, em alguns deles, foi possível observar correlações numéricas de resistência e ductilidade, por meio de análise gráfica.

A partir dos resultados experimentais, pode-se concluir que é possível utilizar ensaios de cisalhamento em vigas prismáticas para se obter indicadores a serem utilizados nos ensaios de lajes à punção. Verificou-se que existe uma similaridade de comportamento estrutural entre lajes de concreto com fibras
sujeitas à punção e vigas prismáticas submetidas à força cortante e que, na maioria dos casos, existiu uma correlação entre suas resistências e suas ductilidades.

Nestes ensaios foram testados apenas três tipos de fibras, devido à preocupação de se avaliar também outras variáveis, como resistência do concreto à compressão, volume percentual de fibras, altura útil do elemento e dimensão da chapa de carregamento. A execução de ensaios de vigas prismáticas, como foi feito nesta pesquisa, poderia também ter como finalidade selecionar o melhor tipo de fibra, de acordo com os requisitos de resistência e de ductilidade, a ser empregado na ligação laje-pilar. Seriam ensaios mais simples de se executar e menos onerosos, de onde se poderiam tirar boas conclusões sobre o comportamento da ligação laje-pilar a ser ensaiada posteriormente.

As análises teóricas realizadas a partir das Equações do ACI Modificadas, tanto para lajes como para vigas, forneceram bons indicadores de previsão de resistência ao cisalhamento de vigas sem estribos e resistência à punção de lajes sem armadura de punção, considerando a contribuição da adição de fibras ao concreto.

O Modelo Viga-Arco Modificado pode ser considerado um bom indicador para previsão de resistência e ductilidade de ligações laje-pilar interno, sem armadura transversal e reforçadas com fibras de aço, submetidas à punção. É um modelo simples de ser aplicado e, com base nos testes que foram feitos com os dados experimentais encontrados na revisão bibliográfica, parece fornecer bons resultados. Além disso, não se tinha, até o momento, conhecimento de um modelo de cálculo teórico que permitisse avaliar o efeito da adição de fibras e prognosticar a capacidade resistente de lajes-cogumelo à punção.

Dentro da mesma linha de pesquisa, apresentam-se algumas sugestões para novos trabalhos:

- Desenvolver estudos sobre Mecânica da Fratura, que poderiam fornecer melhores parâmetros para a análise experimental, considerando as aplicações do concreto com fibras nas situações consideradas nesta pesquisa.
Conclusões

- Utilizar outros tipos de fibras, de diferentes relações de aspecto, na análise experimental, a fim de detectar similaridades de comportamento estrutural entre lajes e viga análogas.
- Utilizar lajes e vigas análogas de dimensões maiores, para evitar o efeito de escala nas vigas.
- Estender o estudo experimental para lajes e vigas armadas ao cisalhamento.
- Variar a taxa de armadura de flexão nas séries de ensaios.
- Efetuar análises teóricas, a exemplo das que foram feitas, utilizando-se a equação da FIB (1990).
- Ampliar o Modelo Viga-Arco Modificado com vistas à aplicação nos casos de ligações laje-pilar para pilares de borda e de canto.
- Analisar a possibilidade de adaptação de outros modelos mecânicos ao caso de lajes de concreto reforçado com fibras. No Capítulo 3 têm-se algumas indicações do que poderia ser feito no caso do modelo de GOMES (1991), por exemplo.
ANEXO
A. Tabelas de resistências dos CP

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Nº do CP</th>
<th>Idade</th>
<th>Tipo de ensaio</th>
<th>f_c (MPa)</th>
<th>$f_{ct,sp}$ (MPa)</th>
<th>$f_{ct,f}$ (MPa)</th>
<th>f_r (MPa)</th>
<th>E_c (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 V1A, V1B</td>
<td>1</td>
<td>13</td>
<td>compressão</td>
<td>21,22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13</td>
<td>compressão</td>
<td>37,23*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13</td>
<td>compressão</td>
<td>25,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>13</td>
<td>tração (compr. diam.)</td>
<td>2,372</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>13</td>
<td>tração (compr. diam.)</td>
<td>1,968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>13</td>
<td>tração (compr. diam.)</td>
<td>2,084</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>13</td>
<td>mód. elasticidade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>13</td>
<td>mód. elasticidade</td>
<td></td>
<td></td>
<td>20550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>13</td>
<td>mód. elasticidade</td>
<td></td>
<td></td>
<td>21021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23,13</td>
<td>2,141</td>
<td></td>
<td>20786</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Nº do CP</th>
<th>Idade</th>
<th>Tipo de ensaio</th>
<th>f_c (MPa)</th>
<th>$f_{ct,sp}$ (MPa)</th>
<th>$f_{ct,f}$ (MPa)</th>
<th>f_r (MPa)</th>
<th>E_c (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 V2A, V2B</td>
<td>1</td>
<td>14</td>
<td>compressão</td>
<td>23,78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14</td>
<td>compressão</td>
<td>23,78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14</td>
<td>compressão</td>
<td>25,65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14</td>
<td>tração (compr. diam.)</td>
<td>2,996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>14</td>
<td>tração (compr. diam.)</td>
<td>2,112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>14</td>
<td>tração (compr. diam.)</td>
<td>2,662</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>14</td>
<td>mód. elasticidade</td>
<td></td>
<td></td>
<td>20900</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>14</td>
<td>mód. elasticidade</td>
<td></td>
<td></td>
<td>19160</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>14</td>
<td>mód. elasticidade</td>
<td></td>
<td></td>
<td>20043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24,40</td>
<td>2,590</td>
<td></td>
<td>20034</td>
</tr>
<tr>
<td>Modelo</td>
<td>Nº do CP</td>
<td>Idade</td>
<td>Tipo de ensaio</td>
<td>f_c (MPa)</td>
<td>$f_{ct,sp}$ (MPa)</td>
<td>$f_{ct,f}$ (MPa)</td>
<td>f_r (MPa)</td>
<td>E_c (MPa)</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td></td>
<td>compressão</td>
<td>30,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td></td>
<td>compressão</td>
<td>23,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td></td>
<td>compressão</td>
<td>34,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td></td>
<td>compressão</td>
<td>29,83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>2,803</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>2,718</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>3,316</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>3,072</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td></td>
<td>mód. elasticidade</td>
<td></td>
<td></td>
<td></td>
<td>2042</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td></td>
<td>mód. elasticidade</td>
<td></td>
<td></td>
<td></td>
<td>1932</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td></td>
<td>mód. elasticidade</td>
<td></td>
<td></td>
<td></td>
<td>1820</td>
<td>9</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td></td>
<td></td>
<td>28,06</td>
<td>2,977</td>
<td></td>
<td>1931</td>
<td>9</td>
</tr>
<tr>
<td>Modelo</td>
<td>N° do CP</td>
<td>Idade</td>
<td>Tipo de ensaio</td>
<td>f_c (MPa)</td>
<td>$f_{ct,sp}$ (MPa)</td>
<td>$f_{ct,f}$ (MPa)</td>
<td>f_r (MPa)</td>
<td>E_c (MPa)</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------</td>
<td>-------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td></td>
<td>compressão</td>
<td>58,72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td></td>
<td>compressão</td>
<td>59,98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td></td>
<td>compressão</td>
<td>60,43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td></td>
<td>compressão</td>
<td>60,80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>4,051</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>3,209</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>3,650</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>4,316</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td></td>
<td>mód. elasticidade</td>
<td>2867</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td></td>
<td>mód. elasticidade</td>
<td>2934</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td></td>
<td>mód. elasticidade</td>
<td>2731</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td></td>
<td>mód. elasticidade</td>
<td>2912</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td></td>
<td></td>
<td>56,98</td>
<td>3,807</td>
<td></td>
<td></td>
<td>2861</td>
</tr>
</tbody>
</table>

L4 V4A,V4B V7A,V7B
<table>
<thead>
<tr>
<th>Modelo</th>
<th>N° do CP</th>
<th>Idade</th>
<th>Tipo de ensaio</th>
<th>f_c (MPa)</th>
<th>$f_{ct,sp}$ (MPa)</th>
<th>$f_{ct,f}$ (MPa)</th>
<th>f_r (MPa)</th>
<th>E_c (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5</td>
<td>V5A, V5B</td>
<td>V8A, V8B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td></td>
<td>compressão</td>
<td>62,93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td></td>
<td>compressão</td>
<td>63,45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td></td>
<td>compressão</td>
<td>60,55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td></td>
<td>compressão</td>
<td>64,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>5,301</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>4,888</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>6,185</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>5,440</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td></td>
<td>tração na flexão</td>
<td>5,537 3,845</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td></td>
<td>tração na flexão</td>
<td>5,624 4,267</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td></td>
<td>tração na flexão</td>
<td>6,944 4,212</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td></td>
<td>mód. elasticidade</td>
<td></td>
<td>2775 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td></td>
<td>mód. elasticidade</td>
<td></td>
<td>2903 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td></td>
<td></td>
<td>59,72 5,454</td>
<td>6,03 5</td>
<td>4,108 5</td>
<td></td>
<td>2839 5</td>
</tr>
<tr>
<td>Modelo</td>
<td>Nº do CP</td>
<td>Idade</td>
<td>Tipo de ensaio</td>
<td>f_{c} (MPa)</td>
<td>$f_{et,sp}$ (MPa)</td>
<td>$f_{et,f}$ (MPa)</td>
<td>f_{t} (MPa)</td>
<td>E_{c} (MPa)</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>L6</td>
<td>V6A,V6B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V9A, V9B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td></td>
<td>compressão</td>
<td>56,39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td></td>
<td>compressão</td>
<td>53,64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td></td>
<td>compressão</td>
<td>49,63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td></td>
<td>compressão</td>
<td>49,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>7,197</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>7,241</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>5,311</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>6,592</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td></td>
<td>tração na flexão</td>
<td>7,465</td>
<td>5,205</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td></td>
<td>tração na flexão</td>
<td>5,616</td>
<td>4,462</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td></td>
<td>tração na flexão</td>
<td>8,662</td>
<td>5,404</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td></td>
<td>mód. elasticidade</td>
<td>2684</td>
<td>0,26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td></td>
<td>mód. elasticidade</td>
<td>2815</td>
<td>5,28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td></td>
<td>mód. elasticidade</td>
<td>2839</td>
<td>6,28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td></td>
<td></td>
<td>52,38</td>
<td>6,585</td>
<td>7,24</td>
<td>5,024</td>
<td>2779</td>
</tr>
<tr>
<td>Modelo</td>
<td>Nº do CP</td>
<td>Idade</td>
<td>Tipo de ensaio</td>
<td>(f_c) (MPa)</td>
<td>(f_{ct,sp}) (MPa)</td>
<td>(f_{ct,f}) (MPa)</td>
<td>(f_r) (MPa)</td>
<td>(E_c) (MPa)</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>compressão</td>
<td>39,43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>compressão</td>
<td>38,72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>compressão</td>
<td>38,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>compressão</td>
<td>37,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>tração (compr. diam.)</td>
<td>4,396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>tração (compr. diam.)</td>
<td>3,850</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>tração (compr. diam.)</td>
<td>3,421</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>tração (compr. diam.)</td>
<td>4,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>tração na flexão</td>
<td>4,352</td>
<td>3,773</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>tração na flexão</td>
<td>5,052</td>
<td>4,960</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>tração na flexão</td>
<td>3,343</td>
<td>3,333</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>mód. elasticidade</td>
<td>28487</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>mód. elasticidade</td>
<td>28353</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>mód. elasticidade</td>
<td>27725</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td></td>
<td>36,55</td>
<td>3,967</td>
<td>4,249</td>
<td>4,022</td>
<td>28188</td>
<td></td>
</tr>
<tr>
<td>Modelo</td>
<td>Nº do CP</td>
<td>Idade</td>
<td>Tipo de ensaio</td>
<td>f<sub>c</sub> (MPa)</td>
<td>f<sub>ct,sp</sub> (MPa)</td>
<td>f<sub>ct,f</sub> (MPa)</td>
<td>f<sub>r</sub> (MPa)</td>
<td>E<sub>c</sub> (MPa)</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>compressão</td>
<td>46,22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>compressão</td>
<td>45,26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>compressão</td>
<td>46,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>tração (compr. diam.)</td>
<td>5,044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>tração (compr. diam.)</td>
<td>5,289</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>tração (compr. diam.)</td>
<td>3,326*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>tração na flexão</td>
<td>5,882</td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>tração na flexão</td>
<td>7,942</td>
<td>6,267</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>tração na flexão</td>
<td>6,637</td>
<td>4,933</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>mód. elasticidade</td>
<td>3301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>mód. elasticidade</td>
<td>3009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>mód. elasticidade</td>
<td>3104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td></td>
<td>46,08</td>
<td>5,167</td>
<td>6,820</td>
<td>5,400</td>
<td>3138</td>
<td></td>
</tr>
</tbody>
</table>

L8
V11A,V11B
<table>
<thead>
<tr>
<th>Modelo</th>
<th>Nº do CP</th>
<th>Idade</th>
<th>Tipo de ensaio</th>
<th>f_c (MPa)</th>
<th>$f_{cl,sp}$ (MPa)</th>
<th>$f_{cl,f}$ (MPa)</th>
<th>f_r (MPa)</th>
<th>E_c (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V12A, V12B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>compressão</td>
<td>70,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>compressão</td>
<td>81,13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>compressão</td>
<td>74,51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>tração (compr. diam.)</td>
<td>4,701</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>tração (compr. diam.)</td>
<td>4,232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>tração (compr. diam.)</td>
<td>4,438</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>tração na flexão</td>
<td>4,236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>tração na flexão</td>
<td>4,740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>tração na flexão</td>
<td>4,493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>mód. elasticidade</td>
<td>3609 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>mód. elasticidade</td>
<td>3638 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>mód. elasticidade</td>
<td>3687 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td></td>
<td></td>
<td>75,27</td>
<td>4,46</td>
<td>4,490</td>
<td></td>
<td>3645 1</td>
</tr>
<tr>
<td>Modelo</td>
<td>Nº do CP</td>
<td>Idade</td>
<td>Tipo de ensaio</td>
<td>f_c (MPa)</td>
<td>$f_{ct,sp}$ (MPa)</td>
<td>$f_{ct,f}$ (MPa)</td>
<td>f_r (MPa)</td>
<td>E_c (MPa)</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>V13A, V13B</td>
<td>1</td>
<td>11</td>
<td>compressão</td>
<td>71,96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11</td>
<td>compressão</td>
<td>72,33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11</td>
<td>compressão</td>
<td>76,20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>11</td>
<td>tração (compr. diam.)</td>
<td>5,419</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>11</td>
<td>tração (compr. diam.)</td>
<td>5,458</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>11</td>
<td>tração (compr. diam.)</td>
<td>6,078</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>11</td>
<td>tração na flexão</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>11</td>
<td>tração na flexão</td>
<td>7,836</td>
<td>5,133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>11</td>
<td>tração na flexão</td>
<td>6,084</td>
<td>5,667</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
<td>mód. elasticidade</td>
<td>3560</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11</td>
<td>mód. elasticidade</td>
<td>3471</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11</td>
<td>mód. elasticidade</td>
<td>3567</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Média</td>
<td></td>
<td></td>
<td>73,50</td>
<td>5,65</td>
<td>6,96</td>
<td>5,400</td>
<td>3533 2</td>
</tr>
<tr>
<td>Modelo</td>
<td>Nº do CP</td>
<td>Idade</td>
<td>Tipo de ensaio</td>
<td>f_c (MPa)</td>
<td>$f_{cl,sp}$ (MPa)</td>
<td>$f_{cl,f}$ (MPa)</td>
<td>f_r (MPa)</td>
<td>E_c (MPa)</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>-----------------</td>
<td>------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V14A,V14B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td></td>
<td>compressão</td>
<td>75,44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td></td>
<td>compressão</td>
<td>68,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td></td>
<td>compressão</td>
<td>75,41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>7,968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>8,585</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td></td>
<td>tração (compr. diam.)</td>
<td>7,340</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td></td>
<td>tração na flexão</td>
<td>8,098</td>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td></td>
<td>tração na flexão</td>
<td>5,687</td>
<td>5,347</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td></td>
<td>tração na flexão</td>
<td>6,074</td>
<td>5,667</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td></td>
<td>mód. elasticidade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3635</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td></td>
<td>mód. elasticidade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3488</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td></td>
<td>mód. elasticidade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3705</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td></td>
<td></td>
<td>73,10</td>
<td>7,96</td>
<td>6,62</td>
<td>6,005</td>
<td>3609</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>
B. Gráficos de ensaio dos prismas

![Diagramas de ensaio dos prismas](image-url)
C. Índices de tenacidade à flexão

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Prisma</th>
<th>Volume de fibras (%)</th>
<th>Índices de tenacidade</th>
<th>ASTM C1018</th>
<th>JSCE-SF4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I5</td>
<td>I10</td>
</tr>
<tr>
<td>L2</td>
<td>P2A</td>
<td>1</td>
<td>4,47</td>
<td>8,75</td>
<td>17,80</td>
</tr>
<tr>
<td></td>
<td>P2B</td>
<td>1</td>
<td>4,39</td>
<td>8,46</td>
<td>15,61</td>
</tr>
<tr>
<td></td>
<td>P2C</td>
<td>1</td>
<td>4,87</td>
<td>9,45</td>
<td>18,40</td>
</tr>
<tr>
<td></td>
<td>Média</td>
<td>1</td>
<td>4,6</td>
<td>8,9</td>
<td>17,3</td>
</tr>
<tr>
<td>L3</td>
<td>P3A</td>
<td>2</td>
<td>5,46</td>
<td>11,23</td>
<td>23,50</td>
</tr>
<tr>
<td></td>
<td>P3C</td>
<td>2</td>
<td>5,57</td>
<td>12,00</td>
<td>25,74</td>
</tr>
<tr>
<td></td>
<td>Média</td>
<td>2</td>
<td>5,5</td>
<td>11,6</td>
<td>24,6</td>
</tr>
<tr>
<td>L5</td>
<td>P5A</td>
<td>1</td>
<td>5,41</td>
<td>12,18</td>
<td>24,11</td>
</tr>
<tr>
<td></td>
<td>P5B</td>
<td>1</td>
<td>10,02*</td>
<td>23,04*</td>
<td>51,01*</td>
</tr>
<tr>
<td></td>
<td>P5C</td>
<td>1</td>
<td>5,63</td>
<td>12,62</td>
<td>28,61</td>
</tr>
<tr>
<td></td>
<td>Média</td>
<td>1</td>
<td>5,5</td>
<td>12,4</td>
<td>26,4</td>
</tr>
<tr>
<td>L6</td>
<td>P6A</td>
<td>2</td>
<td>6,53</td>
<td>13,10</td>
<td>29,94</td>
</tr>
<tr>
<td></td>
<td>P6B</td>
<td>2</td>
<td>5,70</td>
<td>12,27</td>
<td>26,86</td>
</tr>
<tr>
<td></td>
<td>P6C</td>
<td>2</td>
<td>5,83</td>
<td>13,47</td>
<td>30,54</td>
</tr>
<tr>
<td></td>
<td>Média</td>
<td>2</td>
<td>6,0</td>
<td>12,9</td>
<td>29,1</td>
</tr>
<tr>
<td>L7</td>
<td>P7A</td>
<td>0,75</td>
<td>5,21</td>
<td>10,41</td>
<td>21,56</td>
</tr>
<tr>
<td></td>
<td>P7B</td>
<td>0,75</td>
<td>6,55*</td>
<td>14,26*</td>
<td>29,07*</td>
</tr>
<tr>
<td></td>
<td>P7C</td>
<td>0,75</td>
<td>4,63</td>
<td>9,99</td>
<td>20,00</td>
</tr>
<tr>
<td></td>
<td>Média</td>
<td>0,75</td>
<td>5,5</td>
<td>11,6</td>
<td>23,5</td>
</tr>
<tr>
<td>L8</td>
<td>P8A</td>
<td>1,50</td>
<td>5,92</td>
<td>12,55</td>
<td>25,87</td>
</tr>
<tr>
<td></td>
<td>P8B</td>
<td>1,50</td>
<td>11,43</td>
<td>26,74</td>
<td>56,26</td>
</tr>
<tr>
<td></td>
<td>P8C</td>
<td>1,50</td>
<td>5,35</td>
<td>11,67</td>
<td>25,95</td>
</tr>
<tr>
<td></td>
<td>Média</td>
<td>1,50</td>
<td>5,6</td>
<td>12,1</td>
<td>25,9</td>
</tr>
<tr>
<td>V13</td>
<td>P10B</td>
<td>0,75</td>
<td>6,58</td>
<td>13,47</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>P10C</td>
<td>0,75</td>
<td>4,78</td>
<td>9,28</td>
<td>15,51</td>
</tr>
<tr>
<td></td>
<td>Média</td>
<td>0,75</td>
<td>5,7</td>
<td>11,4</td>
<td>15,5</td>
</tr>
<tr>
<td>V14</td>
<td>P11A</td>
<td>1,50</td>
<td>6,00</td>
<td>13,37</td>
<td>21,19</td>
</tr>
<tr>
<td></td>
<td>P11B</td>
<td>1,50</td>
<td>4,43</td>
<td>9,00</td>
<td>15,39</td>
</tr>
<tr>
<td></td>
<td>P11C</td>
<td>1,50</td>
<td>5,29</td>
<td>11,05</td>
<td>19,79</td>
</tr>
<tr>
<td></td>
<td>Média</td>
<td>1,50</td>
<td>5,2</td>
<td>11,1</td>
<td>18,8</td>
</tr>
</tbody>
</table>

* Valores não considerados na média
D. Deformação da armadura das lajes

Armaduras Tracionadas de L1

Armaduras Comprimidas de L1

Armaduras Tracionadas de L2

Armaduras Comprimidas de L2

Armaduras Tracionadas de L3

Armaduras Comprimidas de L3

Armaduras Tracionadas de L4

Armaduras Comprimidas de L4
E. Deformação da armadura das vigas
Referências Bibliográficas

AZEVEDO, A.P. (1999). Resistência e ductilidade das ligações laje-pilar em lajes de concreto de alta resistência armado com fibras de aço e armadura transversal de pinos. São Carlos. Dissertação (Mestrado) - EESC-USP.
CATELLI JR., C.A. (2000). Determinação de propriedades mecânicas de concreto com fibras de aço. /Relatório de Iniciação Científica apresentado à FAPESP, São Carlos, 2000/

ZAMBRANA VARGAS, E.N. (1997). *Punção em lajes-cogumelo de concreto de alta resistência reforçado com fibras de aço*. São Carlos. Dissertação (Mestrado) - EESC-USP.
Bibliografia Complementar

