Past, Present and Future of Precast Prestressed Concrete Bridges in the U.S.

First Brazilian Meeting on Integration of Research-Design-Production in the Field of Precast Concrete

Maher K. Tadros, P.E., Ph.D.

Charles Vranek Professor of Civil Engineering

Types of Bridge Girders in Brazil

I Girders

seção trapezoidal

a) tipos de elementos

b) arranjo dos elementos

Types of Precast Concrete Bridges Built in the US

Double Tee and Multi-stem (20 m)
Inverted Tee (30 m)
AASHTO Box (36 m)
AASHTO I-Beam (45 m)
New I-Beam shapes (65 m)
Spliced New I-Beams (96 m)

INVERTED TEE SYSTEM

Introduced in Nebraska 1996 for Shallow Bridges with spans to 30 meters, span/depth = 30-33 Also used in Kansas, Iowa, North Carolina, Florida, and Australia

Standardized Precast Segmental Overpass, Post-Tensioned Voided and Ribbed Slabs

3-Span Continuous

- Typical Span 24 37 m
- Typical Span/Depth Ratio 30

Channel Bridge, **Upstate**, **New York**, **USA**

Utilizes the parapet as a structural element, thereby minimizing the structural depth.

NU (Nebraska University) I- GIRDER

NU GIRDER

tandard American Association of State Highway and Transportation o

Features: Adaptable to high strength concrete •Hard metric dimensions Stable during shipping and erection Aesthetically appealing Accepts Welded Wire Reinforcement Accepts internal post-tensioning

Welded Wire Reinforcement

- Economy
- Reinforcement spacing is accurate
- Higher Strength

Applications Outside Nebraska

- New England Bulb Tee (6 states)
- Michigan I-Girder
- Washington Super Girder
- Utah
- Minnesota
- Wisconsin
- Iowa
- Mexico
- Panama
- India

Typical Cross Section

AASHTO Girder section Design

Optimized Design: Seven NU I-Girder Lines, concrete strength = 84 MPa (840 kg/cm²)

Typical Cross Section

NU Section Girder Design

Precast Concrete Girders Made Continuous for Deck Weight

Threaded Rod Continuity

Advantages:

- For the same prestressing and strength level, span capacity can be increased by about 15%
- 2. <u>Better structural performance</u>: Distress at pier diaphragm is eliminated at deck placement and over service life

Platte River East Bridge

Connection

US-75 / N-92 Clarks Viaduct

No. 100-10 - 100-100 - 100-100-

1st High Performance Concrete Bridge to Use the Threaded Rod Continuity System

Modified Haunched Girder Threaded Rod System, for Improved Aesthetics

Spliced Precast Post-Tensioned I-Girder Bridges

- •Pretension short segments in precast concrete plant
- •Post-tension the segments at the site to create long continuous spans

• This system is less expensive in the US than segmental box girder bridges (exception: California!)

- 174 Total Bridges in USA
- 32 States
- 67 Bridges in Canada

Dodge Street (US 6) over 204th Street (N31)

Skyline Spliced Girder Bridge Data

• Span = 63 m

- Clear Roadway = 16.9 m
- Girder Concrete = $70 \text{ MPa} (700 \text{ kg/cm}^2)$
- Cast-in-place Slab = $30 \text{ MPa} (300 \text{ kg/cm}^2)$
- Strands: Pretension: 46- 15.2mm, Post-tension: 3-15-15.2 mm (each 15 strand tendon in 89 mm duct)
- Auxiliary reinforcement: Welded Wire Fabric
- Span-to-girder depth ratio : 30.7
- Span-to-superstructure depth ratio: 27.8

Rock Cut Bridge, WA

I-15 Reconstruction, Salt Lake City, UT

COLUMN DE

Bow River Bridge, AB -Built in 2002 -4 spans: 2 at 174 ft, 2 at 213 ft -One segment per span -211 ft beams weighed 268,000 lb. -Beams 9.2 ft deep with 6.9 in. web -11.65 ft beam spacing -Very high live load requirements -Concrete saved 10% over steel girders

Con-Force Structures Limited Calgary, Alberta

NU Girder 65m (210 ft) December 2001

Bow River Bridge, AB

U "Tub" Girders

Washington State Standard U "Tub" Girder

Benefits of "U" girders:

- Aesthetics
- Minimal span-depth ratio
- Mimics other box girder type construction
- Eliminates lines of girders
- Stable for shipment

Disadvantages:

- Heavy weight
- Complicated fabrication
- Difficult field forming of deck

SCAC-TEC Section Versus Washington State Section

Curved Spliced Precast Post-Tensioned I-Girder Bridges

Value Engineering –Preliminary Design

Arbor Road Bridge

- Precast U-Girder
- 4 Girder Lines @ 9'-4"
- Precast Deck Panel w/ 1 ¹/₂" Concrete Overlay

Bridge at Philadelphia Airport Produced by Schuylkill Company

Bridge at Philadelphia Airport Produced by Schuyikili Company

Precast Concrete Substructures

Post **Censioning:** P.T. bars are 5 mm inch, **Grade 1050 IPa** (10500 g/cm^2 , 75 nm diameter alvanized teel ducts

Segments are Match Cast

Hammerhead Segments Ready for Shipping

n fully erected pier: PT rods are inserted, jack stresses bars, and ucts are injected with grout

Propost Pior Cons

Precast Concrete Deck/Barrier System

Panels Stacked up in Precast Yard

Panel Shipping

10

-

0-1

Precast Concrete Full Bridge Superstructure

Baldorioty Bridges, San Juan

The Challenge...

- Design & Build Four Urban Grade Separations
 - * 2 300 m long x 10 m wide
 - * 2 210 m long x 10 m wide
- Maintain Continuous Traffic
- Complete each Bridge in Less than

\$100,000 Penalty, per day, beyond 72 hours

Precast girders

Precast pier & cap

CIP footing

Richmond-San Rafael Bridge, San Francisco, CA

Existing Cross Section

Proposed Cross Section
Typical Section

Concrete Filled Steel Tube Arches

Ravenna Arch Bridge Model, Ravenna, Nebraska

Self Consolidating concrete used to fill the hollow steel elements

Bottom Chord fill mix -30 in. spread -Glenium 30/30 -Easy to pump -Self leveling in tube

THANK YOU

